scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantized electric multipole insulators

07 Jul 2017-Science (American Association for the Advancement of Science)-Vol. 357, Iss: 6346, pp 61-66
TL;DR: This work introduces a paradigm in which “nested” Wilson loops give rise to topological invariants that have been overlooked and opens a venue for the expansion of the classification of topological phases of matter.
Abstract: The Berry phase provides a modern formulation of electric polarization in crystals. We extend this concept to higher electric multipole moments and determine the necessary conditions and minimal models for which the quadrupole and octupole moments are topologically quantized electromagnetic observables. Such systems exhibit gapped boundaries that are themselves lower-dimensional topological phases. Furthermore, they host topologically protected corner states carrying fractional charge, exhibiting fractionalization at the boundary of the boundary. To characterize these insulating phases of matter, we introduce a paradigm in which “nested” Wilson loops give rise to topological invariants that have been overlooked. We propose three realistic experimental implementations of this topological behavior that can be immediately tested. Our work opens a venue for the expansion of the classification of topological phases of matter.
Citations
More filters
Journal ArticleDOI
01 Feb 2019-Nature
TL;DR: An algorithm based on symmetry indicators is used to search a crystallographic database and finds thousands of candidate topological materials, which could be exploited in next-generation electronic devices.
Abstract: Over the past decade, topological materials—in which the topology of electron bands in the bulk material leads to robust, unconventional surface states and electromagnetism—have attracted much attention. Although several theoretically proposed topological materials have been experimentally confirmed, extensive experimental exploration of topological properties, as well as applications in realistic devices, has been restricted by the lack of topological materials in which interference from trivial Fermi surface states is minimized. Here we apply our method of symmetry indicators to all suitable nonmagnetic compounds in all 230 possible space groups. A database search reveals thousands of candidate topological materials, of which we highlight 241 topological insulators and 142 topological crystalline insulators that have either noticeable full bandgaps or a considerable direct gap together with small trivial Fermi pockets. Furthermore, we list 692 topological semimetals that have band crossing points located near the Fermi level. These candidate materials open up the possibility of using topological materials in next-generation electronic devices. An algorithm based on symmetry indicators is used to search a crystallographic database and finds thousands of candidate topological materials, which could be exploited in next-generation electronic devices.

607 citations

Journal ArticleDOI
TL;DR: A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated, and shape dependence allows corner states to act as topologically protected but reconfigurable local resonances.
Abstract: Higher-order topological insulators1–5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator1, based on quantized quadrupole polarization, was demonstrated in classical mechanical6 and electromagnetic7,8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a ‘breathing’ kagome lattice9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres2,9,10. Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated.

591 citations

Journal ArticleDOI
TL;DR: It is demonstrated theoretically and experimentally that 3D-printed two-dimensional acoustic meta-structures can possess nontrivial bulk topological polarization and host one-dimensional edge and Wannier-type second-order zero-dimensional corner states with unique acoustic properties, and offer possibilities for advanced control of the propagation and manipulation of sound, including within the radiative continuum.
Abstract: Topological systems are inherently robust to disorder and continuous perturbations, resulting in dissipation-free edge transport of electrons in quantum solids, or reflectionless guiding of photons and phonons in classical wave systems characterized by topological invariants. Recently, a new class of topological materials characterized by bulk polarization has been introduced, and was shown to host higher-order topological corner states. Here, we demonstrate theoretically and experimentally that 3D-printed two-dimensional acoustic meta-structures can possess nontrivial bulk topological polarization and host one-dimensional edge and Wannier-type second-order zero-dimensional corner states with unique acoustic properties. We observe second-order topological states protected by a generalized chiral symmetry of the meta-structure, which are localized at the corners and are pinned to 'zero energy'. Interestingly, unlike the 'zero energy' states protected by conventional chiral symmetry, the generalized chiral symmetry of our three-atom sublattice enables their spectral overlap with the continuum of bulk states without leakage. Our findings offer possibilities for advanced control of the propagation and manipulation of sound, including within the radiative continuum.

588 citations

Journal ArticleDOI
01 Apr 2019
TL;DR: In this paper, the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems are introduced, including Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals.
Abstract: The study of classical wave physics has been reinvigorated by incorporating the concept of the geometric phase, which has its roots in optics, and topological notions that were previously explored in condensed matter physics. Recently, sound waves and a variety of mechanical systems have emerged as excellent platforms that exemplify the universality and diversity of topological phases. In this Review, we introduce the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems: Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals. This Review describes topological phenomena that can be realized in acoustic and mechanical systems. Methods of symmetry breaking are described, along with the consequences and rich phenomena that emerge.

535 citations

Journal ArticleDOI
Eslam Khalaf1
TL;DR: In this article, higher-order topological insulators and superconductors protected by inversion symmetry are investigated, characterized by gapped bulk and surface with gapless modes confined to hinges or corners of the sample.
Abstract: Here, higher-order topological insulators and superconductors protected by inversion symmetry are investigated. These phases are characterized by gapped bulk and surface with gapless modes confined to hinges or corners of the sample. Such surface states can be understood as topological defects that are globally stabilized by inversion. They can be built using a layer construction that embeds a standard topological insulator/superconductor into a higher dimension by symmetrically adding to it copies of itself. Using this procedure, a complete classification of such states in any dimension is obtained and several examples for possible physical realizations are provided.

467 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field effect transistor, was measured and it was shown that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device.
Abstract: Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

5,619 citations

Journal ArticleDOI
TL;DR: In this article, the Hall conductance of a two-dimensional electron gas has been studied in a uniform magnetic field and a periodic substrate potential, where the Kubo formula is written in a form that makes apparent the quantization when the Fermi energy lies in a gap.
Abstract: The Hall conductance of a two-dimensional electron gas has been studied in a uniform magnetic field and a periodic substrate potential $U$. The Kubo formula is written in a form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit expressions have been obtained for the Hall conductance for both large and small $\frac{U}{\ensuremath{\hbar}{\ensuremath{\omega}}_{c}}$.

4,811 citations

Journal ArticleDOI
TL;DR: A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization of the Hall conductance in the absence of an external magnetic field, and exhibits the so-called "parity anomaly" of (2+1)-dimensional field theories.
Abstract: A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization of the Hall conductance ${\ensuremath{\sigma}}^{\mathrm{xy}}$ in the absence of an external magnetic field. Massless fermions without spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity anomaly" of (2+1)-dimensional field theories.

4,606 citations

Journal ArticleDOI
TL;DR: In this paper, a method for determining the optimally localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid is presented, which is suitable for use in connection with conventional electronic-structure codes.
Abstract: We discuss a method for determining the optimally localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid. By ''generalized Wannier functions'' we mean a set of localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we minimize a functional that represents the total spread Sigma(n)(r(2))(n) - (r)(n)(2) of the Wannier functions in real space, our method proceeds directly from the Bloch functions as represented on a mesh of k points, and carries out the minimization in a space of unitary matrices U-mn((k)) describing the rotation among the Bloch bands at each k point. The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si, GaAs, molecular C2H4, and LiCl will be presented.

3,155 citations

Journal ArticleDOI
TL;DR: It is shown that physically $\ensuremath{\Delta}P can be interpreted as a displacement of the center of charge of the Wannier functions.
Abstract: We consider the change in polarization \ensuremath{\Delta}P which occurs upon making an adiabatic change in the Kohn-Sham Hamiltonian of the solid. A simple expression for \ensuremath{\Delta}P is derived in terms of the valence-band wave functions of the initial and final Hamiltonians. We show that physically \ensuremath{\Delta}P can be interpreted as a displacement of the center of charge of the Wannier functions. The formulation is successfully applied to compute the piezoelectric tensor of GaAs in a first-principles pseudopotential calculation.

3,136 citations