scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantized Hall conductance as a topological invariant

15 Mar 1985-Physical Review B (American Physical Society)-Vol. 31, Iss: 6, pp 3372-3377
TL;DR: The new formulation generalizes the earlier result and draws the conclusion that there must be a symmetry breaking in the many-body ground state when applying to the fractional quantized Hall effect.
Abstract: Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be expressed in a topologically invariant form showing the quantization explicitly. The new formulation generalizes the earlier result by Thouless, Kohmoto, Nightingale, and den Nijs to the situation where many-body interaction and substrate disorder are also present. When applying to the fractional quantized Hall effect, we draw the conclusion that there must be a symmetry breaking in the many-body ground state. The possibility of writing the fractionally quantized Hall conductance as a topological invariant is also discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{ u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

4,457 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the parity of the occupied Bloch wave functions at the time-reversal invariant points in the Brillouin zone greatly simplifies the problem of evaluating the topological invariants.
Abstract: Topological insulators are materials with a bulk excitation gap generated by the spin-orbit interaction that are different from conventional insulators. This distinction is characterized by ${Z}_{2}$ topological invariants, which characterize the ground state. In two dimensions, there is a single ${Z}_{2}$ invariant that distinguishes the ordinary insulator from the quantum spin-Hall phase. In three dimensions, there are four ${Z}_{2}$ invariants that distinguish the ordinary insulator from ``weak'' and ``strong'' topological insulators. These phases are characterized by the presence of gapless surface (or edge) states. In the two-dimensional quantum spin-Hall phase and the three-dimensional strong topological insulator, these states are robust and are insensitive to weak disorder and interactions. In this paper, we show that the presence of inversion symmetry greatly simplifies the problem of evaluating the ${Z}_{2}$ invariants. We show that the invariants can be determined from the knowledge of the parity of the occupied Bloch wave functions at the time-reversal invariant points in the Brillouin zone. Using this approach, we predict a number of specific materials that are strong topological insulators, including the semiconducting alloy ${\mathrm{Bi}}_{1\ensuremath{-}x}{\mathrm{Sb}}_{x}$ as well as $\ensuremath{\alpha}\text{\ensuremath{-}}\mathrm{Sn}$ and HgTe under uniaxial strain. This paper also includes an expanded discussion of our formulation of the topological insulators in both two and three dimensions, as well as implications for experiments.

3,349 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of the role of the Berry phase effect in various solid state applications is presented. And a requantization method that converts a semiclassical theory to an effective quantum theory is demonstrated.
Abstract: Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.

3,344 citations


Cites background from "Quantized Hall conductance as a top..."

  • ...The exact quantization was subsequently explained by Laughlin (1981) based on gauge invariance, and was later related to a topological invariance of the energy bands (Avron et al., 1983; Niu et al., 1985; Thouless et al., 1982)....

    [...]

  • ...Niu et al. (1985) further showed that the quantized Hall conductivity in two-dimensions is robust against many-body interactions and disorder....

    [...]

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations


Cites background from "Quantized Hall conductance as a top..."

  • ...Importantly, this integer-valued quantity has a profound topological origin (Avron et al., 1983; Niu et al., 1985; Simon, 1983), which indicates that its value must remain strictly constant under smooth perturbations that preserve the band gaps separating the band n to neighboring bands (Avron et al....

    [...]

  • ...of the Chern number can also be generalized to include the effects of interactions and disorder (Niu et al., 1985)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, it was shown that the fundamental time-reversal invariant (TRI) insulator exists in $4+1$ dimensions, where the effective field theory is described by the $(4 + 1)$-dimensional Chern-Simons theory and the topological properties of the electronic structure are classified by the second Chern number.
Abstract: We show that the fundamental time-reversal invariant (TRI) insulator exists in $4+1$ dimensions, where the effective-field theory is described by the $(4+1)$-dimensional Chern-Simons theory and the topological properties of the electronic structure are classified by the second Chern number. These topological properties are the natural generalizations of the time reversal-breaking quantum Hall insulator in $2+1$ dimensions. The TRI quantum spin Hall insulator in $2+1$ dimensions and the topological insulator in $3+1$ dimensions can be obtained as descendants from the fundamental TRI insulator in $4+1$ dimensions through a dimensional reduction procedure. The effective topological field theory and the ${Z}_{2}$ topological classification for the TRI insulators in $2+1$ and $3+1$ dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of measurable phenomena, the most striking of which is the topological magnetoelectric effect, where an electric field generates a topological contribution to the magnetization in the same direction, with a universal constant of proportionality quantized in odd multiples of the fine-structure constant $\ensuremath{\alpha}={e}^{2}∕\ensuremath{\hbar}c$. Finally, we present a general classification of all topological insulators in various dimensions and describe them in terms of a unified topological Chern-Simons field theory in phase space.

2,658 citations