scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Algorithms and the Fourier Transform

08 Jan 1998-Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences (The Royal Society)-Vol. 454, Iss: 1969, pp 323-337
TL;DR: The quantum algorithms of Deutsch, Simon and Shor are described in a way which highlights their dependence on the Fourier transform and an efficient quantum factoring algorithm based on a general formalism of Kitaev is described.
Abstract: The quantum algorithms of Deutsch, Simon and Shor are described in a way which highlights their dependence on the Fourier transform. The general construction of the Fourier transform on an Abelian group is outlined and this provides a unified way of understanding the efficacy of the algorithms. Finally we describe an efficient quantum factoring algorithm based on a general formalism of Kitaev and contrast its structure to the ingredients of Shor9 algorithm.
Citations
More filters
01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
16 Mar 2000-Nature
TL;DR: In information processing, as in physics, the classical world view provides an incomplete approximation to an underlying quantum reality that can be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
Abstract: In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can--in principle now, but probably eventually in practice--be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.

3,080 citations

Journal ArticleDOI
TL;DR: It is argued that it is nevertheless misleading to view entanglement as a key resource for quantum‐computational power, as it is necessary for any quantum algorithm to offer an exponential speed‐up over classical computation.
Abstract: For any quantum algorithm operating on pure states, we prove that the presence of multipartite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the...

679 citations

Journal ArticleDOI
TL;DR: How quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers is reviewed.
Abstract: Quantum theory has found a new field of application in the realm of information and computation during recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some notable aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as examples of the impact of quanta on the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement made possible in information processing by a quantum computer. Finally the authors provide some examples of current experimental realizations for quantum computers and future prospects.

534 citations


Cites background from "Quantum Algorithms and the Fourier ..."

  • ...step in which the target qubits are measured (Jozsa, 1997)....

    [...]

Proceedings ArticleDOI
26 Jun 2005
TL;DR: QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings explicit, and preserves superpositions and entanglement -which is essential for quantum parallelism.
Abstract: We introduce the language QML, a functional language for quantum computations on finite types. Its design is guided by its categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive semantics of irreversible quantum computations realisable as quantum gates. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings explicit. Strict programs are free from decoherence and hence preserve superpositions and entanglement -which is essential for quantum parallelism.

242 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion: every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means.
Abstract: It is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion. Here, this assertion is presented explicitly as a physical principle: ‘every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means’. Classical physics and the universal Turing machine, because the former is continuous and the latter discrete, do not obey the principle, at least in the strong form above. A class of model computing machines that is the quantum generalization of the class of Turing machines is described, and it is shown that quantum theory and the ‘universal quantum computer’ are compatible with the principle. Computing machines resembling the universal quantum computer could, in principle, be built and would have many remarkable properties not reproducible by any Turing machine. These do not include the computation of non-recursive functions, but they do include ‘quantum parallelism’, a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it. The intuitive explanation of these properties places an intolerable strain on all interpretations of quantum theory other than Everett’s. Some of the numerous connections between the quantum theory of computation and the rest of physics are explored. Quantum complexity theory allows a physically more reasonable definition of the ‘complexity’ or ‘knowledge’ in a physical system than does classical complexity theory.

3,670 citations

Book
22 Oct 1991
TL;DR: This volume represents a series of lectures which aims to introduce the beginner to the finite dimensional representations of Lie groups and Lie algebras.
Abstract: This volume represents a series of lectures which aims to introduce the beginner to the finite dimensional representations of Lie groups and Lie algebras. Following an introduction to representation theory of finite groups, the text explains how to work out the representations of classical groups.

2,868 citations

Journal ArticleDOI
TL;DR: A class of problems is described which can be solved more efficiently by quantum computation than by any classical or stochastic method.
Abstract: A class of problems is described which can be solved more efficiently by quantum computation than by any classical or stochastic method. The quantum computation solves the problem with certainty in exponentially less time than any classical deterministic computation.

2,509 citations

Journal ArticleDOI
TL;DR: In this article, a common pattern underpinning quantum algorithms can be identified when quantum computation is viewed as multiparticle interference, and an explicit algorithm for generating any prescribed interference pattern with an arbitrary precision is provided.
Abstract: Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. A common pattern underpinning quantum algorithms can be identified when quantum computation is viewed as multiparticle interference. We use this approach to review (and improve) some of the existing quantum algorithms and to show how they are related to different instances of quantum phase estimation. We provide an explicit algorithm for generating any prescribed interference pattern with an arbitrary precision.

1,118 citations

Journal ArticleDOI
TL;DR: The authors give an exposition of Shor's algorithm together with an introduction to quantum computation and complexity theory, and discuss experiments that may contribute to its practical implementation.
Abstract: Current technology is beginning to allow us to manipulate rather than just observe individual quantum phenomena. This opens up the possibility of exploiting quantum effects to perform computations beyond the scope of any classical computer. Recently Peter Shor discovered an efficient algorithm for factoring whole numbers, which uses characteristically quantum effects. The algorithm illustrates the potential power of quantum computation, as there is no known efficient classical method for solving this problem. The authors give an exposition of Shor's algorithm together with an introduction to quantum computation and complexity theory. They discuss experiments that may contribute to its practical implementation. [S0034-6861(96)00303-0]

1,079 citations