# Quantum Computing Based Inference of GRNs

26 Apr 2017-pp 221-233

TL;DR: A novel quantum computing based technique for the reverse engineering of gene regulatory networks from time-series genetic expression datasets is proposed, suggesting that quantum computing technique significantly reduces the computational time, retaining the accuracy of the inferred gene Regulatory networks to a comparatively satisfactory level.

Abstract: The accurate reconstruction of gene regulatory networks from temporal gene expression data is crucial for the identification of genetic inter-regulations at the cellular level. This will help us to comprehend the working of living entities properly. Here, we have proposed a novel quantum computing based technique for the reverse engineering of gene regulatory networks from time-series genetic expression datasets. The dynamics of the temporal expression profiles have been modelled using the recurrent neural network formalism. The corresponding training of model parameters has been realised with the help of the proposed quantum computing methodology based concepts. This is based on entanglement and decoherence concepts. The application of quantum computing technique in this domain of research is comparatively new. The results obtained using this technique is highly satisfactory. We have applied it to a 4-gene artificial genetic network model, which was previously studied by other researchers. Also, a 10-gene and a 20-gene genetic network have been studied using the proposed technique. The obtained results suggest that quantum computing technique significantly reduces the computational time, retaining the accuracy of the inferred gene regulatory networks to a comparatively satisfactory level.

##### Citations

More filters

•

01 Jan 2018

TL;DR: This dissertation aims to provide a chronology of the events leading up to and including the invention of the determinants of infectious disease.

Abstract: .................................................................................................................. III List of Figures ......................................................................................................... VI List of Tables ....................................................................................................... VIII Attestation of Authorship ........................................................................................ X Acknowledgement .................................................................................................. XI

6 citations

••

TL;DR: In this article , an efficient and scalable vulnerability detection method based on a deep neural network model, Long Short-Term Memory (LSTM), and quantum machine learning model (QLSTM) is presented.

Abstract: One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source codes are now available in order to create a large-scale, classical machine-learning and quantum machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of open-source functions that point to potential exploits. We created an efficient and scalable vulnerability detection method based on a deep neural network model– Long Short-Term Memory (LSTM), and quantum machine learning model– Long Short-Term Memory (QLSTM), that can learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Previous studies lack analyzing features of the source code that causes models to recognize flaws in real-life examples. Therefore, We keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as Glove and fastText. The embedded vectors are subsequently fed into the classical and quantum convolutional neural networks to classify the possible vulnerabilities. To measure the performance, we used evaluation metrics such as F1 score, precision, recall, accuracy, and total execution time. We made a comparison between the results derived from the classical LSTM and quantum LSTM using basic feature representation as well as semantic and syntactic representation. We found that the QLSTM with semantic and syntactic features detects significantly accurate vulnerability and runs faster than its classical counterpart.

3 citations

##### References

More filters

•

01 Jan 2000

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.

Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

01 Dec 2010

TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.

Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

••

IBM

^{1}TL;DR: A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving and a number of "no free lunch" (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class.

Abstract: A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of "no free lunch" (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class. These theorems result in a geometric interpretation of what it means for an algorithm to be well suited to an optimization problem. Applications of the NFL theorems to information-theoretic aspects of optimization and benchmark measures of performance are also presented. Other issues addressed include time-varying optimization problems and a priori "head-to-head" minimax distinctions between optimization algorithms, distinctions that result despite the NFL theorems' enforcing of a type of uniformity over all algorithms.

10,771 citations

••

TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.

Abstract: This chapter describes the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics. A computer which will give the same probabilities as the quantum system does. The present theory of physics allows space to go down into infinitesimal distances, wavelengths to get infinitely great, terms to be summed in infinite order, and so forth; and therefore, if this proposition is right, physical law is wrong. Quantum theory and quantizing is a very specific type of theory. The chapter talks about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature. There are interesting philosophical questions about reasoning, and relationship, observation, and measurement and so on, which computers have stimulated people to think about anew, with new types of thinking.

7,202 citations

••

TL;DR: In this paper, it is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion: every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means.

Abstract: It is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion. Here, this assertion is presented explicitly as a physical principle: ‘every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means’. Classical physics and the universal Turing machine, because the former is continuous and the latter discrete, do not obey the principle, at least in the strong form above. A class of model computing machines that is the quantum generalization of the class of Turing machines is described, and it is shown that quantum theory and the ‘universal quantum computer’ are compatible with the principle. Computing machines resembling the universal quantum computer could, in principle, be built and would have many remarkable properties not reproducible by any Turing machine. These do not include the computation of non-recursive functions, but they do include ‘quantum parallelism’, a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it. The intuitive explanation of these properties places an intolerable strain on all interpretations of quantum theory other than Everett’s. Some of the numerous connections between the quantum theory of computation and the rest of physics are explored. Quantum complexity theory allows a physically more reasonable definition of the ‘complexity’ or ‘knowledge’ in a physical system than does classical complexity theory.

3,670 citations