scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Cosmology and the Evolution of Inflationary Spectra

23 Dec 2016-Physical Review D (American Physical Society)-Vol. 94, Iss: 12, pp 123524
TL;DR: In this article, the authors illustrate how it is possible to calculate the quantum gravitational effects on the spectra of primordial scalar/tensor perturbations starting from the canonical, Wheeler-De Witt approach to quantum cosmology.
Abstract: We illustrate how it is possible to calculate the quantum gravitational effects on the spectra of primordial scalar/tensor perturbations starting from the canonical, Wheeler-De Witt, approach to quantum cosmology. The composite matter-gravity system is analyzed through a Born-Oppenheimer approach in which gravitation is associated with the heavy degrees of freedom and matter (here represented by a scalar field) with the light ones. Once the independent degrees of freedom are identified, the system is canonically quantized and a semiclassical approximation is used for the scale factor. The differential equation governing the dynamics of the primordial spectra with their quantum-gravitational corrections is then obtained and is applied to diverse inflationary evolutions. Finally, the analytical results are compared to observations through a Monte Carlo Markov chain technique and an estimate of the free parameters of our approach is finally presented and the results obtained are compared with previous ones.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a quantum geometrodynamical approach to the quantum matter-gravity system is presented, which refers to the Born-Oppenheimer (BO) method and includes back reaction and non-adiabatic contributions.
Abstract: We illustrate and examine diverse approaches to the quantum matter-gravity system which refer to the Born-Oppenheimer (BO) method. In particular we first examine a quantum geometrodynamical approach introduced by other authors in a manner analogous to that previously employed by us, so as to include back reaction and non-adiabatic contributions. On including such effects it is seen that the unitarity violating effects previously found disappear. A quantum loop space formulation (based on a hybrid quantisation, polymer for gravitation and canonical for matter) also refers to the BO method. It does not involve the classical limit for gravitation and has a highly peaked initial scalar field state. We point out that it does not resemble in any way to our traditional BO approach. Instead it does resemble an alternative, canonically quantised, non BO approach which we have also previously discussed.

38 citations

Journal ArticleDOI
TL;DR: In this article, a method of constructing gauge-invariant operators from the knowledge of the eigenstates of the generator in time-reparametrization invariant mechanical systems is described.
Abstract: We describe a method of construction of gauge-invariant operators (Dirac observables or ``evolving constants of motion'') from the knowledge of the eigenstates of the gauge generator in time-reparametrization invariant mechanical systems. These invariant operators evolve unitarily with respect to an arbitrarily chosen time variable. We emphasize that the dynamics is relational, both in the classical and quantum theories. In this framework, we show how the ``emergent Wentzel-Kramers-Brillouin time'' often employed in quantum cosmology arises from a weak-coupling expansion of invariant transition amplitudes, and we illustrate an example of singularity avoidance in a vacuum Bianchi I (Kasner) model.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors revisited the calculation of quantum-gravitational corrections to the power spectra of scalar and tensor perturbations in the Born-Oppenheimer approach to quantum gravity.
Abstract: We revisit the calculation of quantum-gravitational corrections to the power spectra of scalar and tensor perturbations in the Born-Oppenheimer approach to quantum gravity. We focus on the issue of the definition of the inner product of the theory and the unitarity of the corrections to the dynamics of the cosmological perturbations. We argue that the correction terms are unitary, provided the inner product is defined in a suitable way, which can be related to a notion of gauge fixing the time variable and the use of conditional probabilities in quantum cosmology. We compare the corrections obtained within this framework to earlier results in the literature and we conclude with some remarks on the physical interpretation of the correction terms.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the authors generalize former findings regarding quantum-gravitational corrections arising from a canonical quantization of a perturbed Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) universe during inflation by considering an initial state for the scalar and tensor perturbations that generalizes the adiabatic vacuum state and allows us to consider the scenario that the perturbation modes start their evolution in an excited state.
Abstract: We generalize former findings regarding quantum-gravitational corrections arising from a canonical quantization of a perturbed Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) universe during inflation by considering an initial state for the scalar and tensor perturbations that generalizes the adiabatic vacuum state and allows us to consider the scenario that the perturbation modes start their evolution in an excited state. Our result shows that the quantum-gravitationally corrected power spectra get modified by prefactors including the excitation numbers.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical.
Abstract: We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results of the semiclassical interpretation, and its generalisation known as the Born-Oppenheimer approach to quantum cosmology, can be obtained by gauge fixing, both at the classical and quantum levels. By `gauge fixing' we mean a particular choice of the time coordinate, which determines the arbitrary Lagrange multiplier that appears in Hamilton's equations. In the quantum theory, we adopt a tentative definition of the (Klein-Gordon) inner product, which is positive definite for solutions of the quantum constraint equation found via an iterative procedure that corresponds to a weak coupling expansion in powers of the inverse Planck mass. We conclude that the wave function should be interpreted as a state vector for both gravitational and matter degrees of freedom, the dynamics of which is unitary with respect to the chosen inner product and time variable.

17 citations


Cites background from "Quantum Cosmology and the Evolution..."

  • ...Several works in the literature [50,55,56,59,62,63] have addressed this topic by applying the semiclassical or BO approaches to compute quantum gravitational corrections to the Cosmic Microwave Background (CMB) power spectrum of cosmological scalar and tensor perturbations....

    [...]

  • ...It is also worth mentioning that Kamenshchik, Tronconi and Venturi [55, 59, 62] found corrections to the power spectrum by considering ‘non-adiabatic’ effects related to the quantum backreaction and Berry connection terms....

    [...]

References
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
Peter A. R. Ade, Nabila Aghanim, Monique Arnaud, Frederico Arroja, M. Ashdown, J. Aumont, Carlo Baccigalupi, Mario Ballardini, A. J. Banday, R. B. Barreiro, Nicola Bartolo, E. Battaner, K. Benabed, Alain Benoit, A. Benoit-Lévy, J.-P. Bernard, Marco Bersanelli, P. Bielewicz, J. J. Bock, Anna Bonaldi, Laura Bonavera, J. R. Bond, Julian Borrill, François R. Bouchet, F. Boulanger, M. Bucher, Carlo Burigana, R. C. Butler, Erminia Calabrese, Jean-François Cardoso, A. Catalano, Anthony Challinor, A. Chamballu, R.-R. Chary, H. C. Chiang, P. R. Christensen, Sarah E. Church, David L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, D. Contreras, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, Luigi Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, Jacques Delabrouille, F.-X. Désert, Jose M. Diego, H. Dole, S. Donzelli, Olivier Doré, Marian Douspis, A. Ducout, X. Dupac, George Efstathiou, F. Elsner, Torsten A. Ensslin, H. K. Eriksen, James R. Fergusson, Fabio Finelli, Olivier Forni, M. Frailis, Aurelien A. Fraisse, E. Franceschi, A. Frejsel, Andrei V. Frolov, S. Galeotta, Silvia Galli, K. Ganga, C. Gauthier, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo, Krzysztof M. Gorski, Serge Gratton, A. Gregorio, Alessandro Gruppuso, Jon E. Gudmundsson, Jan Hamann, Will Handley, F. K. Hansen, Duncan Hanson, D. L. Harrison, Sophie Henrot-Versille, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, W. A. Holmes 
TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
Abstract: We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.

3,438 citations

Journal ArticleDOI
TL;DR: In this paper, an inflationary model was proposed, in which before the slow-roll inflation the universe is in a contracting phase, and fit the model with the Planck data, showing that this model may generate not only the power deficit at low l, but also a large hemispherical power asymmetry in the CMB.
Abstract: Recent Planck data show the anomalies of cosmic microwave background (CMB) fluctuations on large angular scales, which confirms the early observations by WMAP. We continue studying an inflationary model, in which before the slow-roll inflation the universe is in a contracting phase, and fit the model with the Planck data. We show that this model may generate not only the power deficit at low l, but also a large hemispherical power asymmetry in the CMB. We also discuss the implication of the result to the eternal inflation scenario.

177 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation was performed, showing that most common backgrounds like fast-roll evolution, matter or radiationdominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow roll inflation.
Abstract: We show that models of `just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low l, and so seem disfavoured by recent observational hints for a lack of CMB power at l 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

81 citations