scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the MAP shell effectively prevented the photocorrosion of PbS, resulting in highly improved stability in the cell efficiency with time and the approach provides method for developing high performance QD-sensitized solar cells.
Abstract: We report on the fabrication of PbS/CH3NH3PbI3 (=MAP) core/shell quantum dot (QD)-sensitized inorganic–organic heterojunction solar cells on top of mesoporous (mp) TiO2 electrodes with hole transporting polymers (P3HT and PEDOT:PSS). The PbS/MAP core/shell QDs were in situ-deposited by a modified successive ionic layer adsorption and reaction (SILAR) process using PbI2 and Na2S solutions with repeated spin-coating and subsequent dipping into CH3NH3I (=MAI) solution in the final stage. The resulting device showed much higher efficiency as compared to PbS QD-sensitized solar cells without a MAP shell layer, reaching an overall efficiency of 3.2% under simulated solar illumination (AM1.5, 100 mW·cm–2). From the measurement of the impedance spectroscopy and the time-resolved photoluminescence (PL) decay, the significantly enhanced performance is mainly attributed to both reduced charge recombination and better charge extraction by MAP shell layer. In addition, we demonstrate that the MAP shell effectively pre...

58 citations

Journal ArticleDOI
TL;DR: In this article, the impact of interfacial property changes on aggregation behavior and photoinduced charge separation in mixed metal oxide nanoparticle ensembles was explored, and the photogeneration of trapped charge carriers was measured with electron paramagnetic resonance (EPR) spectroscopy.
Abstract: We explored the impact of interfacial property changes on aggregation behavior and photoinduced charge separation in mixed metal oxide nanoparticle ensembles. TiO2 and SnO2 nanoparticles were synthesized by metal organic chemical vapor synthesis and subsequently transformed into aqueous colloidal dispersions using formic acid for adjustment of the particles’ surface charge. Surface charge-induced heteroaggregation was found to yield blended nanoparticle systems of exceptionally high mixing quality and, after vacuum annealing, to extremely high concentrations of heterojunctions between TiO2 and SnO2 nanoparticles with dehydroxylated surfaces. For tracking charge transfer processes across heterojunctions, the photogeneration of trapped charge carriers was measured with electron paramagnetic resonance (EPR) spectroscopy. On blended nanoparticles systems with high concentrations of SnO2–TiO2 heterojunctions, we observed an enhanced cross section for interparticular charge separation. This results from an effe...

58 citations

Journal ArticleDOI
18 Jan 2010-Small
TL;DR: The use of NCs, in combination with molecular dyes as supracollector nanocomposites could offer an additional degree of control over their charge recombination and/or transfer properties, thus opening new routes in the development ofphotovoltaic andoptoelectronic devices based on nanoscale interactions.
Abstract: has been very limited so far because theproblems of internal recombination and low charge extractioncould not be overcome. The use of NCs, in combination withmolecular dyes as supracollector nanocomposites could offeranadditionaldegreeofcontrolovertheirchargerecombinationand/or transfer properties, thus opening new routes in thedevelopmentofphotovoltaicandoptoelectronicdevicesbasedon nanoscale interactions. Combined with the increase of thelight-absorption-wavelengthrangeduetotheaddedabsorptionofbothabsorbers,

58 citations

Journal ArticleDOI
TL;DR: In this article, a conformal overlayer of titanium dioxide on an insulating mesoporous template was used as a photoanode for dye-sensitized solar cells.
Abstract: In this paper, we present a way of utilizing thin and conformal overlayer of titanium dioxide on insulating mesoporous template as a photoanode for dye-sensitized solar cells (DSC). Different thicknesses of TiO2 ranging from 1 nm to 15 nm are deposited on the surface of the template by atomic layer deposition (ALD) technique. This systematic study helps unravelling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6 nm thick TiO2 film on a 3 μm mesoporous insulating substrate is shown to transport 8 mA/cm2 of photocurrent density along with 900 mV of open-circuit potential when using our standard donor-π-acceptor sensitizer and Co(bipyridine) redox mediator.

57 citations

Journal ArticleDOI
TL;DR: The MnCdSe/Br-PGR system can be used as a better super sensitizer in quantum-dot-sensitized solar cell to increase efficiency further and confirms that the Mn dopant act as the electron storage center.
Abstract: Specially aligned surface-accumulated Mn-doped CdSe (MnCdSe) quantum dots (QDs) have been synthesized to study the effect of dopant atom on charge-carrier dynamics in QD materials. EPR studies suggest that the 4T1 state of Mn2+ lies above the conduction band of CdSe, and as a result no Mn-luminescence was observed from MnCdSe. Femtosecond transient absorption studies suggest that Mn atom introduces structural defects in surface-doped CdSe, which acts as electron trap center in doped QD for the photoexcited electron. Bromo-pyrogallol red (Br-PGR) were found to form strong charge-trasfer complex with both CdSe and MnCdSe QDs. Charge separation in both the CdSe/Br-PGR and MnCdSe/Br-PGR composites was found to take place in three different pathways by transferring the photoexcited hole of CdSe/MnCdSe QDs to Br-PGR, electron injection from photoexcited Br-PGR to the QDs, and direct electron transfer from the HOMO of Br-PGR to the conduction band of both the QDs. Hole-transfer dynamics are found to be quite sim...

57 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations