scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: These experiments reveal fast electron trapping for aged CdTe NCs from the single excitonic state (X) and increase in electron trapping rate triggers coherent acoustic phonons by virtue of the ultrafast impulsive time scale of the surface trapping process.
Abstract: Aging of semiconductor nanocrystals (NCs) is well-known to attenuate the spontaneous photoluminescence from the band edge excitonic state by introduction of nonradiative trap states formed at the NC surface. In order to explore charge carrier dynamics dictated by the surface of the NC, femtosecond pump/probe spectroscopic experiments are performed on freshly synthesized and aged CdTe NCs. These experiments reveal fast electron trapping for aged CdTe NCs from the single excitonic state (X). Pump fluence dependence with excitonic state-resolved optical pumping enables directly populating the biexcitonic state (XX), which produces further accelerated electron trapping rates. This increase in electron trapping rate triggers coherent acoustic phonons by virtue of the ultrafast impulsive time scale of the surface trapping process. The observed trapping rates are discussed in terms of electron transfer theory.

55 citations

Journal ArticleDOI
TL;DR: It is proposed that the mandatory addressability of the light emitters can be achieved by a combination of organized QD growth assisted by templated self-assembly, and advanced inter-QD defect engineering to boost the optical emissivity of group-IV QDs at room-temperature.
Abstract: In this review, we report on fabrication paths, challenges, and emerging solutions to integrate group-IV epitaxial quantum dots (QDs) as active light emitters into the existing standard Si technology. Their potential as laser gain material for the use of optical intra- and inter-chip interconnects as well as possibilities to combine a single-photon-source-based quantum cryptographic means with Si technology will be discussed. We propose that the mandatory addressability of the light emitters can be achieved by a combination of organized QD growth assisted by templated self-assembly, and advanced inter-QD defect engineering to boost the optical emissivity of group-IV QDs at room-temperature. Those two main parts, the site-controlled growth and the light emission enhancement in QDs through the introduction of single defects build the main body of the review. This leads us to a roadmap for the necessary further development of this emerging field of CMOS-compatible group-IV QD light emitters for on-chip applications.

55 citations


Cites background from "Quantum Dot Solar Cells. Semiconduc..."

  • ...Exploiting those quantum properties of nanostructures led during recent years to novel electronic and optical properties which are exploited in semiconductor devices with higher performance [3], such as QD-lasers [3–6], QD-detectors [7] QD memories [8] or QD solar cells [9, 10], and QD-based thermoelectric devices [11]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the photovoltaic characteristics of cadmium sulfide (CdS) and Bi 2 S 3 quantum dots (QDs) sensitized solar cells were reported.

55 citations

Journal ArticleDOI
TL;DR: In this article, a linker seeding chemical bath deposition method was proposed to achieve a compact coverage of QDs on a TiO2 matrix through a linkers seeding process, leading to 4.23% power conversion efficiency.
Abstract: We have significantly improved open circuit voltage and fill factor with a Pt counter electrode of quasi-solid state quantum dot sensitized solar cells (QDSSCs) by achieving compact coverage of QDs on a TiO2 matrix through a linker seeding chemical bath deposition process, leading to 4.23% power conversion efficiency, nearly two times that with conventionally deposited control photoanode. The distinguishing characteristic of our linker seeding synthesis is that it does not rely on surface adsorption of precursor ions directly on TiO2 (TiO2∼Cdx) but rather nucleates special ionic seeds on a compact linker layer (TiO2-COORS-Cdx), thereby resulting in a full and even coverage of QDs on the TiO2 surface in large area. We have shown that the compact coverage not only helps to suppress recombination from electrolyte but also gives rise to better charge transport through the QD layer. This linker seeding chemical bath deposition method is general and expected to reinforce the hope of quasi-solid state QDSSCs as ...

54 citations

Journal ArticleDOI
TL;DR: In this paper, a novel composite titanium dioxide (TiO2) films of 10 μm thickness were prepared and characterized with an emphasis on evaluating their photovoltaic properties, and an interesting synergistic effect was observed when Au NPs and poly(3-octylthiophene) (P3OT) were used in conjunction.
Abstract: Novel composite titanium dioxide (TiO2) films of 10 μm thickness were prepared and characterized with an emphasis on evaluating their photovoltaic properties. The films contained 13 nm TiO2 nanocrystals (NCs) with anatase crystalline phase deposited on FTO substrates, composited with CdSe quantum dots (QDs), gold nanoparticles (Au NPs), and poly(3-octylthiophene) (P3OT) in different configurations and combinations. With the introduction of Au NPs or P3OT into the TiO2/QDs films, the photocurrent increased to ∼85% and ∼150%, respectively, while the photoconversion efficiency increased by ∼167% and ∼177%, respectively. An interesting synergistic effect was observed when Au NPs and P3OT were used in conjunction. The configuration of TiO2/Au/QDs/P3OT film exhibited a photocurrent of 906 μA (an enhancement of ∼285%) and a photoconversion efficiency of 0.661% (an enhancement of ∼600%) compared to that of TiO2/QDs films. Such significant enhancement is attributed to the ability of the Au NPs to facilitate charge...

54 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations