scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: An integrated computational study is presented, which combines ab initio molecular dynamics and excited state calculations including thousands of excitations, aimed at understanding the impact of this kind of surface ligand on the optoelectronic properties of CdSe QDs.
Abstract: The rational design of ligand molecules has earned lots of attention as an elegant means to tailor the electronic and optical properties of semiconductor quantum dots (QDs). Aromatic dithiocarbamate molecules, in particular, are known to greatly influence the optoelectronic properties of CdSe QDs, red-shifting the absorption features and enhancing the photoluminescence. Here, we present an integrated computational study, which combines ab initio molecular dynamics and excited state calculations including thousands of excitations, aimed at understanding the impact of this kind of surface ligand on the optoelectronic properties of CdSe QDs. We demonstrate that the valence electronic states of the dithiocarbamate molecules, mostly localized in the anchoring moiety, are responsible for the red-shift of the absorption features of capped CdSe QDs. Ligands develop interfacial electronic states close to the band edges of the CdSe, which enhance the absorption features of the QD and might open new channels for the...

49 citations

Journal ArticleDOI
TL;DR: In this article, the electronic structure and electronic effective masses of the new non-toxic material CH3NH3GeCl3 were investigated by first-principle calculations.

49 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis conditions of Bi2S3 nanorods were systematically investigated to obtain Nanorods of a desired dimension, with high aspect ratios and good crystallinity.
Abstract: Bismuth sulfide (Bi2S3) nanorods exhibit a low band gap, a high absorbance coefficient and good dispersity. In this study, the synthesis conditions of Bi2S3 nanorods were systematically investigated to obtain nanorods of a desired dimension, with high aspect ratios and good crystallinity. The as synthesized Bi2S3 nanorods, 37.2 nm in length and 6.1 nm in width, have a low band gap of ∼1.4 eV with a conduction band and valence band of −3.8 eV and −5.2 eV, respectively. The nanorods were blended with poly(3-hexylthiophene) (P3HT) at a weight ratio of 1:1 to form a light harvesting P3HT:Bi2S3 hybrid film. The incorporated Bi2S3 nanorods can not only contribute light harvesting but also lead to a more ordered structure of the P3HT phase and a more efficient π–π* transition. Surface potential mapping of the hybrid film, measured by Kelvin probe force microscope (KPFM), shows a significantly negative shift (−34 mV) under white light illumination, which indicates carrier dissociation and the accumulation of negative charge on top of the hybrid film. The photovoltaic characteristics of the devices were also observed for those based on the P3HT:Bi2S3 hybrid film. This novel P3HT:Bi2S3 hybrid material provides a new candidate for the fabrication of low-cost and environmentally friendly polymer/inorganic hybrid solar cells.

49 citations

Journal ArticleDOI
TL;DR: In this paper, the analysis of visible light activation of room temperature NO2 gas sensitivity of metal oxide semiconductors (MOS): blank and CdSe quantum dots (QDs) sensitized nanocrystalline matrixes ZnO, SnO2 and In2O3 were synthesized by the precipitation method.

49 citations

Journal ArticleDOI
TL;DR: In this paper, a skeletal Cu 7 S 4 nanocages with symmetric opening windows were rational designed and synthesized by kinetic roughening processes, and a possible formation mechanism had been proposed.

49 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations