scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a cooperative quantum dot and plasmonic effect on improving the performance of dye synthesized solar cells, in which CdS QDs, gold nanoparticles (GNPs), and gold nanorods (GNRs) are incorporated into the active layer.
Abstract: This work describes a cooperative quantum dot and plasmonic effect on improving the performance of dye synthesized solar cells, in which CdS QDs, gold nanoparticles (GNPs), and gold nanorods (GNRs) are incorporated into the active layer. The cooperative nanoparticles show a superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to dye synthesized solar cells with a power conversion efficiency accounting for a 147% enhancement. The cooperative CdS QDs and plasmonic effect arose from the cooperation of the resonance enhancement of QDs and two different nanostructures. Detailed studies shed light into the influence of quantum dots and plasmonic nanostructures on dissociation, exciton generation, and charge transport as well as recombination inside these devices.

45 citations

Journal ArticleDOI
TL;DR: A novel PSC designed and implemented that combines functions of energy harvesting and storage in a single device and delivers a power conversion efficiency of 6.11%.
Abstract: Photo-supercapacitors (PSCs) combine functions of energy harvesting and storage in a single device, and in this study, a new architecture for a PSC is designed and implemented. Cadmium sulfide (CdS) quantum dots/hibiscus (hb) dye co-sensitized TiO2 is used as the solar cell. Poly(3,4-ethylenedioxypyrrole) (PEDOP)@manganese dioxide (MnO2) is employed as the counter electrode (CE) for the solar cell and also as the electrodes for the symmetric supercapacitor. The two ends of a long flat current collector support two spatially separated PEDOP@MnO2 coatings, which serve as the CEs for the TiO2/hb/CdS photoanode and yet another PEDOP@MnO2 electrode in sandwich configurations. In this cell, under 1 sun (100 mW cm-2) illumination, the TiO2/hb/CdS photoanode undergoes charge separation and by channeling the photocurrent to the PEDOP@MnO2 electrodes, the symmetric cell part is charged to a voltage of 0.72 V. The PSC delivers a specific capacitance of 183 F g-1, an energy density of 13.2 Wh kg-1, and a power density of 360 W kg-1 at a discharge current density of 1 A g-1. During the self-discharge process, PEDOP@MnO2-based PSC retains a voltage of 0.72 V up to 500 s and maintains a stable voltage of 0.5 V thereafter. The TiO2/hb/CdS photoanode with the PEDOP@MnO2 CE in an aqueous polysulfide-silica gel electrolyte delivers a power conversion efficiency of 6.11%. This demonstration of a novel PSC opens up opportunities to develop new architectures for efficiently combining energy conversion and storage.

45 citations

Journal ArticleDOI
25 Jun 2018
TL;DR: It is found that an ETL with a lower CBM is not necessary to realize efficient charge transfer in QDHSCs, and a spike in the band structure at the ETL/QD interface is useful for suppressing interfacial recombination and improving the open-circuit voltage.
Abstract: In quantum dot heterojunction solar cells (QDHSCs), the QD active layer absorbs sunlight and then transfers the photogenerated electrons to an electron-transport layer (ETL). It is generally believed that the conduction band minimum (CBM) of the ETL should be lower than that of the QDs to enable efficient charge transfer from the QDs to the collection electrode (here, FTO) through the ETL. However, by employing Mg-doped ZnO (Zn1−xMgxO) as a model ETL in PbS QDHSCs, we found that an ETL with a lower CBM is not necessary to realize efficient charge transfer in QDHSCs. The existence of shallow defect states in the Zn1−xMgxO ETL can serve as additional charge-transfer pathways. In addition, the conduction band offset (CBO) between the ETL and the QD absorber has been, for the first time, revealed to significantly affect interfacial recombination in QDHSCs. We demonstrate that a spike in the band structure at the ETL/QD interface is useful for suppressing interfacial recombination and improving the open-circuit voltage. By varying the Mg doping level in ZnO, we were able to tune the CBM, defect distribution and carrier concentration in the ETL, which play key roles in charge transfer and recombination and therefore the device performance. PbS QDHSCs based on the optimized Zn1−xMgxO ETL exhibited a high power conversion efficiency of 10.6%. Our findings provide important guidance for enhancing the photovoltaic performance of QD-based solar cells.

45 citations

Journal ArticleDOI
TL;DR: In this paper, a CdTe nanorod array on ITO has been demonstrated using a catalyst-free thermal evaporation method, which is attributed to the large absorption coefficient of the material and also suggests good electronic structure quality of the nanorods.
Abstract: CdTe nanorod arrays on ITO have been demonstrated using a catalyst-free thermal evaporation method. Despite the stacking faults observed in the nanorods, they show intense near band edge emission at ∼1.5 eV with a narrow full width at half-maximum of 79 meV and negligible deep-level emission during the room temperature photoluminescence measurement. The device based on the aligned array-on-ITO configuration demonstrates excellent photoresponse to the visible light, which is ascribed to the large absorption coefficient of the material and also suggests good electronic structure quality of the nanorods.

45 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations