scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of surface atoms on the emission from core−shell nanocrystals depends on whether the surface atom is anionic or cationic, and the effect of surface composition on the luminescence of these materials.
Abstract: The role of surface atoms on the emission from core−shell nanocrystals depends on whether the surface atom is anionic or cationic. A cation-rich surface enhances the emission intensity, while an anion-rich surface leads to deterioration of the fluorescence signal. However, the correspondence of surface coverage to emission intensity is not so straightforward and depends on what kind of surface sites are being talked about. In this Article, we report the study of CdSe−CdS and CdSe−ZnS core−shell nanocrystals and see the effect of surface composition on the luminescence of these materials.

34 citations

Journal ArticleDOI
TL;DR: It is shown that the blue-shifted peak recombination energy can be understood as a first-order electronic perturbation that affects the band-edge electron- and hole-states differently.
Abstract: Spectrally resolved fluorescence imaging of single CdSe/ZnS quantum dots (QDs), charged by electrospray deposition under negative bias has revealed a surprising net blue shift (∼60 meV peak-to-peak) in the distribution of center frequencies in QD band-edge luminescence. Electrostatic force microscopy (EFM) on the electrospray QD samples showed a subpopulation of charged QDs with 4.7 ± 0.7 excess electrons, as well as a significant fraction of uncharged QDs as evidenced by the distinct cantilever response under bias. We show that the blue-shifted peak recombination energy can be understood as a first-order electronic perturbation that affects the band-edge electron- and hole-states differently. These studies provide new insight into the role of electronic perturbations of QD luminescence by excess charges.

34 citations

Journal ArticleDOI
TL;DR: In this article, isolated semiconductor nanocrystal quantum dots (QDs) and small clusters of QDs by single-molecule time-correlated single-photon counting have been constructed, from which fluorescence intensity trajectories, autocorrelation functions, decay histograms, and lifetime-intensity distributions have been derived.
Abstract: We have studied isolated semiconductor nanocrystal quantum dots (QDs) and small clusters of QDs by single-molecule time-correlated single-photon counting, from which fluorescence intensity trajectories, autocorrelation functions, decay histograms, and lifetime-intensity distributions have been constructed. These measurements confirm that QD clusters exhibit unique fluorescence behavior not observed in isolated QDs. In particular, the QD clusters exhibit a short-lifetime component in their fluorescence decay that is correlated with low fluorescence intensity of the cluster. A model based on nonradiative energy transfer to QDs within a cluster that have smaller energy gaps, combined with independent blinking for the QDs in a cluster, accounts for the main experimental features.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss on different electrical measurement techniques like currentvoltage studies, photon conversion efficiency, impedance studies, capacitance measurements, lifetime measurements, imaging and Hall Effect techniques that helps in identifying the underlying problems and optimizing the processes and parameters towards better performance of the device.

34 citations

Journal ArticleDOI
TL;DR: In this article, a highly transparent and luminescent CdSe quantum dot (QD)/epoxy nanocomposite was prepared by mixing amido-functionalized QDs with an epoxy matrix.
Abstract: A highly transparent and luminescent CdSe quantum dot (QD)/epoxy nanocomposite was prepared by mixing amido-functionalized QDs with an epoxy matrix. The original oleic acid ligand on the QDs was replaced by thioglycolic acid, and then primary amine groups were introduced via a reaction between the carboxyl group of thioglycolic acid and Schiff’s base. The QDs with amido-functionalized ligands showed a better dispersibility and higher optical properties in the epoxy matrix. It was found that the nanocomposite filled with 0.3 wt% modified green light-emitting QDs had a similar transparency to the neat epoxy and twice the luminescence intensity of nanocomposite-filled 0.3 wt% original QDs. Moreover, a QD/epoxy nanocomposite, which could emit clear white light by combining the unabsorbed blue excitation light and the re-emitted yellow light, was successfully fabricated by following the same strategy. The as-prepared QD/epoxy nanocomposite has potential applications in encapsulating materials in light-emitting diode.

34 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations