scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a high performance quantum dot-sensitized solar cell (QDSSC) is reported, which consists of a TiO2/CuInS2-QDs/CdS/ZnS photoanode, a polysulfide electrolyte, and a CuS counter electrode.
Abstract: A high-performance quantum dot-sensitized solar cell (QDSSC) is reported, which consists of a TiO2/CuInS2-QDs/CdS/ZnS photoanode, a polysulfide electrolyte, and a CuS counter electrode. The sensitization process involves attaching presynthesized CuInS2 QDs (3.5 nm) to a TiO2 substrate with a bifunctional linker, followed by coating CdS with successive ionic layer adsorption and reaction (SILAR) and ZnS as the last SILAR layer for passivation. This process constructs a sensitizing layer that comprises CdS nanocrystals, closely packed around the earlier-linked CuInS2 QDs, which serve as the pillars of the layer. The CuS counter electrode, prepared via successive ionic solution coating and reaction, has a small charge transfer resistance in the polysulfide electrolyte. The QDSSC exhibits a short-circuit photocurrent (Jsc) of 16.9 mA cm−2, an open-circuit photovoltage (Voc) of 0.56 V, a fill factor of 0.45, and a conversion efficiency of 4.2% under one-sun illumination. The heterojunction between the CuInS2 QDs and CdS extends both the optical absorption and incident photon conversion efficiency (IPCE) spectra of the cell to a longer wavelength of approximately 800 nm, and provides an IPCE of nearly 80% at 510 nm. The high TiO2 surface coverage of the sensitizers suppresses recombination of the photogenerated electrons. This results in a longer lifetime for the electrons, and therefore, the high Voc value. The notably high Jsc and Voc values demonstrate that this sensitization strategy, which exploits the quantum confinement reduction and other synergistic effects of the CuInS2-QDs/CdS/ZnS heterostructure, can potentially outperform those of other QDSSCs.

303 citations

Journal ArticleDOI
24 Apr 2012-ACS Nano
TL;DR: The modified deposition technique with use of linker molecule MPA-capped water-soluble QDs and well-developed inverted type-I core/shell structure of the sensitizer together with the sintering treatment of QD-bound TiO(2) electrodes shows a record photovoltaic performance with a conversion efficiency of 5.32%.
Abstract: Presynthesized high-quality CdS/CdSe inverted type-I core/shell structure QDs have been deposited onto TiO2 electrodes after first coating with bifunctional linker molecules, mercaptopropionic acid (MPA), and the resulting quantum dot sensitized solar cells (QDSCs) exhibited record conversion efficiency of 5.32% (Voc = 0.527 V, Jsc = 18.02 mA/cm2, FF = 0.56) under simulated AM 1.5, 100 mW cm–2 illumination. CdS/CdSe QDs with different CdSe shell thicknesses and different corresponding absorption onsets were prepared via the well-developed organometallic high-temperature injection method. MPA-capped water-dispersible QDs were then obtained via ligand exchange from the initial organic ligand capped oil-dispersible QDs. The QD-sensitized TiO2 electrodes were facilely prepared by pipetting the MPA-capped CdS/CdSe QD aqueous solution onto the TiO2 film, followed by a covering process with a ZnS layer and a postsintering process at 300 °C. Polysulfide electrolyte and Cu2S counterelectrode were used to provide h...

300 citations


Cites background from "Quantum Dot Solar Cells. Semiconduc..."

  • ...Undoubtedly, this observed wide absorption range is favorable for harvesting solar light in the cell devices.(3,4) Deposition of CdS/CdSe QDs onto TiO2 Electrodes....

    [...]

Journal ArticleDOI
TL;DR: A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, leading to a new certified record in CQD photovoltaics.
Abstract: Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

300 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the development of quantum dot-sensitized solar cells (QDSCs) is presented in this paper, including the fundamental principles, key materials in QDSCs, recombination control, and stability issues.
Abstract: Quantum dot-sensitized solar cells (QDSCs) have emerged as a promising candidate for next-generation solar cells due to the distinct optoelectronic features of quantum dot (QD) light-harvesting materials, such as high light, thermal, and moisture stability, facilely tunable absorption range, high absorption coefficient, multiple exciton generation possibility, and solution processability as well as their facile fabrication and low-cost availability. In recent years, we have witnessed a dramatic boost in the power conversion efficiency (PCE) of QDSCs from 5% to nearly 13%, which is comparable to other kinds of emerging solar cells. Both the exploration of new QD light-harvesting materials and interface engineering have contributed to this fantastically fast improvement. The outstanding development trend of QDSCs indicates their great potential as a promising candidate for next-generation photovoltaic cells. In this review article, we present a comprehensive overview of the development of QDSCs, including: (1) the fundamental principles, (2) a history of the brief evolution of QDSCs, (3) the key materials in QDSCs, (4) recombination control, and (5) stability issues. Finally, some directions that can further promote the development of QDSCs in the future are proposed to help readers grasp the challenges and opportunities for obtaining high-efficiency QDSCs.

298 citations

Journal ArticleDOI
TL;DR: In this article, a conformal catalytic thin film was used as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest in alternative energy technologies.
Abstract: The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD-MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as-deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth-abundant materials for the ORR and the OER.

295 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations