scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a first-principles, computational screen of the tuning of In carboxylate precursor chemistry to alter the kinetics of elementary steps in InP QD growth is carried out.
Abstract: Indium phosphide quantum dots (QDs) represent promising replacements for more toxic QDs, but InP QD production lags behind other QD materials due to limited understanding of how to tune InP QD growth. We carry out a first-principles, computational screen of the tuning of In carboxylate precursor chemistry to alter the kinetics of elementary steps in InP QD growth. We employ a large database normally used for discovery of therapeutic drug-like molecules to discover design rules for these inorganic complexes while maintaining realism (i.e., stable, synthetically accessible substituents) and providing diversity in a 210-molecule test set. We show the In–O bond cleavage energy, which is tuned through ligand functionalization, to be a useful proxy for In–P bond formation energetics in InP QD synthesis. Energy decomposition analysis on a 32-molecule subset reveals that lower activation energies correlate to later transition states, due to stabilization from greater In–P bond formation and more favorable reactio...

27 citations

Journal ArticleDOI
TL;DR: In this paper, the unique optoelectronic properties of a nanocomposite material comprised of cadmium selenide (CdSe) nanocrystals (NCs) embedded in a photoconductive liquid C60 have been investigated.
Abstract: The unique optoelectronic properties of a nanocomposite material comprised of cadmium selenide (CdSe) nanocrystals (NCs) embedded in a photoconductive liquid C60 have been investigated. CdSe NCs are shown to sensitize the composite material to visible light, resulting in charge transfer from optically excited CdSe NCs to the solvent-free liquid C60 phase.

27 citations

Journal ArticleDOI
TL;DR: The experimental results indicated that this facile synthesis route would provide a versatile approach for the preparation of other water-soluble sulfide NCs.
Abstract: A new sulfur precursor with a highly reactive chemical nature was prepared with S powder and NaBH₄ at the high temperature of 180 °C in a closed autoclave and made it possible to carry out the synthesis of high quality metal sulfide nanocrystals (NCs) with diverse composition and structure Using this new sulfur source, we demonstrated aqueous synthesis of colloidal Cu-doped ZnCdS NCs (d-dots) with pure, color-tunable photoluminescence (PL) in a wide spectral range (from 517 to 650 nm) based on the 'co-nucleation doping' strategy The influences of the various experimental variables, including Cd/Zn ratio, Cu-doping concentration, pH value and amount of mercaptopropionic acid (MPA), on the optical properties of Cu-doped ZnCdS NCs were systematically investigated Furthermore, highly efficient and stable dopant emission from Cu:ZnCdS/ZnS core/shell d-dots with PL quantum yield as high as 40% was achieved by the deposition of a ZnS shell around the bare Cu:ZnCdS cores; this is the highest reported to date for aqueous doped NCs The optical properties and structure of the d-dots were characterized by UV-vis absorption spectra, PL spectra, x-ray photoelectron spectroscopy, powder x-ray diffraction, and transmission electron microscopy The experimental results indicated that this facile synthesis route would provide a versatile approach for the preparation of other water-soluble sulfide NCs

27 citations

Journal ArticleDOI
TL;DR: This review aims to identify current applications, the current methods used for characterization and quantification, current environmental concentrations (if known), and an introduction to the toxicology research of nanomaterials.
Abstract: As nanomaterials are harnessed for medicine and other technological advances, an understanding of the toxicology of these new materials is required to inform our use. This toxicological knowledge will be required to establish the medical and environmental regulations required to protect consumers and those involved in nanomaterial manufacturing. Nanoparticles of titanium oxide, carbon nanotubes, semiconductor quantum dots, gold, and silver represent a high percentage of the nanotechnology currently available or currently poised to reach consumers. For these nanoparticles, this review aims to identify current applications, the current methods used for characterization and quantification, current environmental concentrations (if known), and an introduction to the toxicology research. Continued development of analytical tools for the characterization and quantification of nanomaterials in complex environmental and biological samples will be required for our understanding of the toxicology and environmental impact of nanomaterials. Nearly all materials exhibit toxicity at a high enough concentration. Robust, rapid, and cost effective analytical techniques will be required to determine current background levels of anthropogenic, accidental, and engineered nanoparticles in air, water, and soil. The impact of the growing number of engineered nanoparticles used in consumer goods and medical applications can then be estimated. This will allow toxicological profiles relevant to the demonstrated or predicted environmental concentrations to be determined.

27 citations

Journal ArticleDOI
TL;DR: It is reported on the microstructural crystal phase transformation of electrospun TiO(2) nanofibers generated via sol-gel electrospinning technique, and the incorporation of as-synthesized CdSe quantum dots (QDs) to different phases ofTiO( 2) nan ofibers (NFs) via bifunctional surface modification.
Abstract: We report on the microstructural crystal phase transformation of electrospun TiO2 nanofibers generated via sol–gel electrospinning technique, and the incorporation of as-synthesized CdSe quantum dots (QDs) to different phases of TiO2 nanofibers (NFs) via bifunctional surface modification. The effect of different phases of TiO2 on photo-excited electron injection from CdSe QDs to TiO2 NFs, as measured by photoluminescence spectroscopy (PL) is also discussed. Nanofiber diameter and crystal structures are dramatically affected by different calcination temperatures due to removal of polymer carrier, conversion of ceramic precursor into ceramic nanofibers, and formation of different TiO2 phases in the fibers. At a low calcination temperature of 400 oC only anatase TiO2 nanofiber are obtained; with increasing calcination temperature (up to 500 oC) these anatase crystals became larger. Crystal transformation from the anatase to the rutile phase is observed above 500oC, with most of the crystals transforming into...

27 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations