scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: The picosecond-resolved, time-correlated single-photon-count (TCSPC) spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC and revealed similar dynamics for the charge transfer from dye molecules to ZnN both in the presence and absence of Au nanoparticles.
Abstract: Zinc oxide (ZnO) nanorods decorated with gold (Au) nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC). The picosecond-resolved, time-correlated single-photo ...

105 citations

Journal ArticleDOI
TL;DR: In this article, an effective medium model for embedded plasmonic nanostructures in photovoltaic thin-film solar cells is presented, and the model is used to identify the most promising avenues for realizing plasmoric performance enhancements in solvents.
Abstract: Solution-processed solar cells are particularly suited to benefit from absorption enhancement by plasmonic nanoparticles, due to their transport-limited film thicknesses and the ease with which metal nanoparticles can be integrated into the materials. Despite practical demonstrations of performance enhancements, the overall benefits have so far been limited in scope to photocurrents well below the theoretical limits. In this Perspective, we critically evaluate the prospects for plasmonic enhancements in solution-processed thin-film solar cells. We give an overview of recent work, focusing on embedded plasmonic nanoparticles in organic, perovskite, and colloidal quantum dot solar cells. We then develop an intuitive effective medium model for embedded plasmonic nanostructures in photovoltaic thin films, evaluate the model in the context of previous results in the field, and use the model to provide a framework for identifying the most promising avenues for realizing plasmonic performance enhancements in sol...

105 citations

Journal ArticleDOI
TL;DR: Large gold domains eventually form; these support efficient plasmon oscillations with a light scattering cross section large enough to visualize single hybrid particles in a dark-field microscope during growth in real time.
Abstract: We create large gold domains (up to 15 nm) exclusively on one side of CdS or CdSe/CdS quantum rods by photoreduction of gold ions under anaerobic conditions. Electrons generated in the semiconductor by UV stimulation migrate to one tip where they reduce gold ions. Large gold domains eventually form; these support efficient plasmon oscillations with a light scattering cross section large enough to visualize single hybrid particles in a dark-field microscope during growth in real time.

104 citations

Journal ArticleDOI
28 Jan 2010-Langmuir
TL;DR: Purification of the nanocrystals and adjustment of the pH of the sensitization solution to >10.2 was found to prevent QD agglomeration and takes advantage of the dual chemical functionality of MPA to directly link the QDs to the TiO(2) surface.
Abstract: Sensitization of mesoporous nanocrystalline TiO2 solar cells with quantum confined semiconductor nanocrystals (QDs) has some advantages over organic dyes or inorganic complex sensitizers, yet the reported efficiencies of laboratory devices are not currently competitive with those of dye sensitized cells. Several methods previously utilized to bind CdSe QDs to mesoporous TiO2 films were investigated using low index faces of both anatase and rutile TiO2 polytypes as model systems. The in situ ligand exchange method, where 3-mercaptopropionic acid (MPA) covered TiO2 crystal surfaces are treated with trioctylphosphine (TOP)/trioctylphosphine oxide (TOPO) (TOP/TOPO)-capped CdSe QDs, resulted in very irreproducible and usually low sensitized photocurrents. The ex situ ligand exchange method, whereby MPA-capped QDs are synthesized and directly adsorbed onto bare TiO2 single crystals, resulted in both reproducible sensitized photocurrents and surface coverages that are verified with atomic force microscopy (AFM)....

104 citations

Journal ArticleDOI
TL;DR: In this paper, a quenching mechanism was proposed to detect folic acid concentrations as low as 11μm, thus affording a very sensitive system for the sensing of this biologically active molecule in aqueous solution.

104 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations