scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4) to Na2SO4 using a high-performance liquid chromatography apparatus (HPCA) for the first time.
Abstract: Yu Bai,†,‡ Ivań Mora-Sero,́ Filippo De Angelis, Juan Bisquert, and Peng Wang*,† †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China ‡Institute of Chemistry and Energy Material Innovation, Academy of Fundamental Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China Photovoltaic and Optoelectronic Devices Group, Departament de Física, Universitat Jaume I, 12071 Castello,́ Spain Istituto CNR di Scienze e Tecnologie Molecolari, c/o Dipartimento di Chimica, Universita ̀ di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy

669 citations

Journal ArticleDOI
TL;DR: A novel layered nanofilm of graphene/QDs was constructed from all aqueous solutions to fabricate a photovoltaic device using graphene as acceptor, demonstrating the best performance (IPCE of 16% and photoresponse of 1.08 mAcm 2 under light illumination of 100 mWcm ) in all reported carbon/QD solar cells.
Abstract: To meet the increasing demand of clean energy the harvesting of electricity from solar incident photons with high efficiency at economically viable cost is needed. Quantum dot (QD) based solar cells are poised to play a leading role in this revolution owing to their potential in exceeding the Shockley–Queissar limit, their size-tuned optical response, and their efficient multiple carrier generation. 6] A major challenge in developing high-performance QD solar cells is the effective separation of photogenerated electron–hole pairs and the transfer of the electrons to the electrode. Strategies that have been tried include the introduction of nanomaterials with a suitable band energy as efficient acceptors. Carbon, an environmentally friendly and inexpensive material, exists in a variety of nanostructures ranging from insulator/semiconducting diamond to metallic/semimetallic graphite, conducting/semiconducting fullerenes, and single-walled carbon nanotubes (SWNTs), 10] and recently has been widely used in QD solar cells. Particularly, SWNTs 12] and stacked-cup carbon nanotubes have been used as efficient acceptors to enhance photoinduced charge transfer for improved performance because of their unique one-dimensional nanostructure and appropriate band energy. However, the efficiency of carbon nanomaterial based QD solar cells reported so far is still low (incident photon-to-charge-carrier conversion efficiency (IPCE) 5 % and photocurrent response 0.4 mAcm 2 under light illumination of 100 mWcm ), which is still some distance from the requirement for the next generation of solar cells. Graphene, a new class of two-dimensional carbon material with single-atom-thick layer features different from balllike C60 and one-dimensional carbon nanotubes, has attracted attention in recent years. As a result of its high specific surface area for a large interface, high mobility up to 10000 cm V 1 s , and tunable band gap, graphene should be a very promising electron acceptor in photovoltaic devices. In this work, a novel layered nanofilm of graphene/QDs was constructed from all aqueous solutions to fabricate a photovoltaic device using graphene as acceptor, demonstrating the best performance (IPCE of 16% and photoresponse of 1.08 mAcm 2 under light illumination of 100 mWcm ) in all reported carbon/QD solar cells. For a better understanding of the mechanism of the graphene in improving the performance of the device, the graphene/QDs and SWNT/QDs photovoltaic devices are compared. The fabrication of the layered graphene/QDs device is shown schematically in Figure 1. Chemically reduced graphene was used not only because of its unique properties

649 citations

Journal ArticleDOI
TL;DR: Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding Cd selenideQD cells.
Abstract: In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO2 photoanodes, a new procedure for preparing selenide (Se2−) was developed and used for depositing CdSe QDs in situ over TiO2 mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO2 were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO2 films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)32+/3+], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m2 with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO2 film was combined with an organic hole conductor, spi...

622 citations

Journal ArticleDOI
TL;DR: A critical review of recent developments in this rapidly expanding field, with emphasis on semiconductor HNCs (e.g., quantum dots and quantum rods), can be found in this paper.
Abstract: Colloidal heteronanocrystals (HNCs) can be regarded as solution-grown inorganic–organic hybrid nanomaterials, since they consist of inorganic nanoparticles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures provides great flexibility in engineering their physical and chemical properties. The inorganic particles are heterostructured, i.e. they comprise two (or more) different materials joined together, what gives them remarkable and unique properties that can be controlled by the composition, size and shape of each component of the HNC. The interaction between the inorganic component and the organic ligand molecules allows the size and shape of the HNCs to be controlled and gives rise to novel properties. Moreover, the organic surfactant layer opens up the possibility of surface chemistry manipulation, making it possible to tailor a number of properties. These features have turned colloidal HNCs into promising materials for a number of applications, spurring a growing interest on the investigation of their preparation and properties. This critical review provides an overview of recent developments in this rapidly expanding field, with emphasis on semiconductor HNCs (e.g., quantum dots and quantum rods). In addition to defining the state of the art and highlighting the key issues in the field, this review addresses the fundamental physical and chemical principles needed to understand the properties and preparation of colloidal HNCs (283 references).

610 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed.
Abstract: Hydrogen (H2) production via photocatalytic water splitting is one of the most promising technologies for clean solar energy conversion to emerge in recent decades. The achievement of energy production from water splitting would mean that we could use water as a fuel for future energy need. Among the various photocatalytic materials, titanium dioxide (TiO2) is the dominant and most widely studied because of its exceptional physico-chemical characteristics. Surface decoration of metal/non-metal on TiO2 nanoparticles is an outstanding technique to revamp its electronic properties and enrich the H2 production efficiency. Metal dopants play a vital role in separation of electron-hole pairs on the TiO2 surface during UV/visible/simulated solar light irradiation. In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed. We found that Langmuir-Hinshelwood kinetic model is commonly employed by the researchers to demonstrate the rate of H2 production. Copper (Cu), gold (Au) and platinum (Pt) are the most widely studied dopants for TiO2, owing to their superior work function. The metal dopants can amplify the H2 production efficiency of TiO2 through Schottky barrier formation, surface plasmon resonance (SPR), generation of gap states by interaction with TiO2 VB states. The recent advances and important consequences of 2D materials, perovskites, and other novel photocatalysts for H2 generation have also been reviewed.

609 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations