scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
17 Aug 2011-Langmuir
TL;DR: The development of a fast and simple "one-pot" route for the synthesis of hybrid Au-ZnO hexagonal nanopyramids by sequential homogeneous-heterogeneous nucleation steps involving both Au and Zn ions using microwave irradiation (MWI).
Abstract: This work reports the development of a fast and simple “one-pot” route for the synthesis of hybrid Au-ZnO hexagonal nanopyramids by sequential homogeneous–heterogeneous nucleation steps involving both Au and Zn ions using microwave irradiation (MWI). The rapid decomposition of zinc acetate by MWI in the presence of a mixture of oleic acid (OAc) and oleylamine (OAm) results in the formation of hexagonal ZnO nanopyramids. In the presence of Au ions, the initially formed Au nanocrystals act as heterogeneous nuclei for the nucleation and growth of the ZnO nanopyramids. The Au nanoparticles promote the heterogeneous nucleation of ZnO and the formation of the hexagonal base of the ZnO nanopyramids. Using preformed Au nanoparticles instead of Au ions results in a narrow size distribution of uniform Au-ZnO nanopyramids, each consisting of a gold nanoparticle embedded in the center of the hexagonal base of the ZnO nanopyramid. We study the factors that control the nucleation and growth of these complex structures,...

95 citations

Journal ArticleDOI
TL;DR: In this article, Colloidal CdSe quantum dots (QDs) were suspended in toluene and stored in combinations of light/dark and N2/O2 to simulate four possible benchtop storage environments.
Abstract: With increased interest in semiconductor nanoparticles for use in quantum dot solar cells there comes a need to understand the long-term photostability of such materials. Colloidal CdSe quantum dots (QDs) were suspended in toluene and stored in combinations of light/dark and N2/O2 to simulate four possible benchtop storage environments. CdSe QDs stored in a dark, oxygen-free environment were observed to better retain their optical properties over the course of 90 days. The excited state lifetimes, determined through femtosecond transient absorption spectroscopy, of air-equilibrated samples exposed to light exhibit a decrease in average lifetime (0.81 ns) when compared to samples stored in a nitrogen/dark environment (8.3 ns). A photoetching technique commonly used for controlled reduction of QD size was found to induce energetic trap states to CdSe QDs and accelerate the rate of electron–hole recombination. X-ray absorption near edge structure (XANES) analysis confirms surface oxidation, the extent of whi...

93 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Au particle size, supported on TiO2, on the gas-phase hydrogenation of m-dinitrobenzene has been considered.

93 citations

Journal ArticleDOI
24 Jan 2012-ACS Nano
TL;DR: A one-coat solar paint for designing quantum dot solar cells that offers the advantages of simple design and economically viable next generation solar cells is developed.
Abstract: A transformative approach is required to meet the demand of economically viable solar cell technology. By making use of recent advances in semiconductor nanocrystal research, we have now developed a one-coat solar paint for designing quantum dot solar cells. A binder-free paste consisting of CdS, CdSe, and TiO2 semiconductor nanoparticles was prepared and applied to conducting glass surface and annealed at 473 K. The photoconversion behavior of these semiconductor film electrodes was evaluated in a photoelectrochemical cell consisting of graphene–Cu2S counter electrode and sulfide/polysulfide redox couple. Open-circuit voltage as high as 600 mV and short circuit current of 3.1 mA/cm2 were obtained with CdS/TiO2–CdSe/TiO2 electrodes. A power conversion efficiency exceeding 1% has been obtained for solar cells constructed using the simple conventional paint brush approach under ambient conditions. Whereas further improvements are necessary to develop strategies for large area, all solid state devices, this ...

93 citations


Cites background from "Quantum Dot Solar Cells. Semiconduc..."

  • ..., CdS or CdSe) nanocrystals.(4,29) Both molecular linked approach(30,31) and SILAR(32) 36 have been successfully employed to attach an extremely thin layer of metal chalcogenide to the TiO2 film....

    [...]

Journal ArticleDOI
TL;DR: A facile all-electrochemical approach to fabricate well-aligned ZnO-CdSe core-shell nanorod arrays with excellent uniformity on transparent indium tin oxide (ITO) substrates is reported.
Abstract: Efficient hydrogen production from photoelectrochemical (PEC) water splitting is a promising route to solve the approaching energy crisis. Herein, we report a facile all-electrochemical approach to fabricate well-aligned ZnO–CdSe core–shell nanorod arrays with excellent uniformity on transparent indium tin oxide (ITO) substrates. The shell thickness of the core–shell nanorods can be tuned precisely by adjusting the charge density passing through the working electrode during the deposition of CdSe quantum dots (QDs). The optimized ZnO–CdSe nanorod arrays showed excellent PEC performance with a significant saturated photocurrent density of 14.9 mA cm−2 at 0.8 V (vs. RHE) under AM 1.5 illumination, which is, to the best of our knowledge, the highest value ever reported for similar nanostructures, owing to the favourable band alignment and good distribution of CdSe QDs on ZnO nanorods. Our results demonstrate that the electrochemically deposited ZnO–CdSe nanorod arrays can be utilized as efficient photoanodes in PEC water splitting cells.

93 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations