scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: Experimental results show under a low excitation intensity that ∼99% of the photoexcited electrons in CsPbI3 QDs can be injected into TiO2 with a size-dependent rate, which is also ∼2.5 times faster than that in the case of ZnO.
Abstract: Photoexcited electron injection dynamics from CsPbI3 quantum dots (QDs) to wide gap metal oxides are studied by transient absorption spectroscopy. Experimental results show under a low excitation intensity that ∼99% of the photoexcited electrons in CsPbI3 QDs can be injected into TiO2 with a size-dependent rate ranging from 1.30 × 1010 to 2.10 × 1010 s–1, which is also ∼2.5 times faster than that in the case of ZnO. A demonstration QD-sensitized solar cell based on a CsPbI3/TiO2 electrode is fabricated that delivers a power conversion efficiency of 5%.

72 citations


Cites background from "Quantum Dot Solar Cells. Semiconduc..."

  • ...Therefore, eq (2) leads to ηinj value reaching almost 99%, which means that about 99% of the photoexcited electrons in the CsPbI3 QDs can be injected into TiO2 nanoparticles....

    [...]

  • ...(QD/TiO ) QD (QD/TiO ) + inj QD PL PL k k C C k k k k     (2)...

    [...]

  • ...their unique properties including size-tunable band gap, large extinction coefficients, and extended photostability.(1-8) Prominently, thermalization of photogenerated electrons in the QDs can be slowed by the phonon bottleneck....

    [...]

Journal ArticleDOI
TL;DR: A new NIR/IR integrating sphere setup for the wavelength region of 600-1600 nm is designed and the results indicate the need for a critical reevaluation of Φ (f) values of IR-emissive nanomaterials and offer guidelines for improved Φ(f) measurements.
Abstract: Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes Itrybe, IR140, and IR26 and several infrared (IR)-emissive Cd1−xHgxTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10−3 in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the use of iron sulfide as the counter electrode (CE) in quantum dots-sensitized solar cells (QDSCs), which was prepared by simply immersing carbon steel in Na2S solution.

72 citations

Journal ArticleDOI
TL;DR: In this paper, a perovskite solar cell with light illumination can increase the carrier concentration, thus enhancing charge recombination and causing the coexistence of high electric field and free carriers, and the cell shows a similar charge storage and junction mechanism to that of the multicrystalline silicon solar cell.
Abstract: Interplays between charge and electric field, which play a critical role in determining the charge transport, recombination, storage and hysteresis in the perovskite solar cell, have been systematically investigated by both electrical transient experiments and theoretical calculations. It is found that the light illumination can increase the carrier concentration in the perovskite absorber, thus enhancing charge recombination and causing the co-existence of high electric field and free carriers. Meanwhile, the cell shows a similar charge storage and junction mechanism to that of the multicrystalline silicon solar cell, where the junction electric field determines the charge collection and distribution. Furthermore, it is demonstrated that the static charge of both the doping and defect coming from ion (vacancy) migration can significantly influence the electric field inside the cell, thus affecting the charge collection and recombination, which could be the origins for the widely-concerned hysteresis behaviors.

71 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectrally resolved transient photoluminescence quenching to measure the magnitude of the Forster radius in blended donor-acceptor QD assemblies.
Abstract: Excitonic energy transfer among colloidal nanocrystal quantum dots (QDs) is responsible for exciton transport in many QD optoelectronic devices. While Forster theory has successfully accounted for the distance scaling of energy transfer in many QD systems, the overall magnitude of the Forster radius in close-packed QD solids remains an open question. Here, we use spectrally resolved transient photoluminescence quenching to measure the magnitude of the Forster radius in blended donor–acceptor QD assemblies. For blends of CdSe/CdZnS core/shell QDs consisting of 4.0 nm diameter donors (λmax,em ≈ 550 nm) and 5.5 nm acceptors (λmax,abs ≈ 590 nm), we measure energy transfer rates per donor–acceptor pair that are 10–100 times faster than the predictions of Forster theory. These rates correspond to an effective Forster radius of 8–9 nm, compared to a theoretical Forster radius of 5–6 nm. We discuss possible sources for the discrepancy between theory and experiment—including the magnitude of the absorption cross s...

71 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations