scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discussed the steps that have led to this discovery, and the future of this rapidly advancing concept have been considered, and it is likely that the next few years of solar research will advance this technology to the very highest efficiencies while retaining the very lowest cost and embodied energy.
Abstract: Over the last 12 months, we have witnessed an unexpected breakthrough and rapid evolution in the field of emerging photovoltaics, with the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. In this Perspective, the steps that have led to this discovery are discussed, and the future of this rapidly advancing concept have been considered. It is likely that the next few years of solar research will advance this technology to the very highest efficiencies while retaining the very lowest cost and embodied energy. Provided that the stability of the perovskite-based technology can be proven, we will witness the emergence of a contender for ultimately low-cost solar power.

2,506 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of functional hybrid materials can be found in this paper, where a variety of inorganic species, from molecular to extended phases, including clusters and nano-sized inorganic particles, have been used in a wide variety of applications.
Abstract: This review surveys the work developed in the field of functional hybrid materials, especially those containing conducting organic polymers (COPs), in combination with a variety of inorganic species, from molecular to extended phases, including clusters and nano-sized inorganic particles. Depending on the dominating structural matrix, we distinguish and analyze organic–inorganic (OI) hybrids, nanocomposite materials, and inorganic–organic (IO) phases. These materials have been used in a wide variety of applications, including energy-storage applications, electrocatalysis, the harnessing of electrochromic and photoelectrochromic properties, application in display devices, photovoltaics, and novel energy-conversion systems, proton-pump electrodes, sensors, or chemiresistive detectors, which work as artificial “noses”.

914 citations

Journal ArticleDOI
TL;DR: In this paper, a solution-based approach of chemical reduction of AuCl4- ions in graphene suspensions is explored, where gold particles anchored on octadecylamine functionalized graphene are readily suspendable in THF medium.
Abstract: Renewed interest in graphene architectures has opened up new avenues to utilize them in electronic and optoelectronic applications. The desire to design graphene−metal nanohybrid assemblies has led us to explore a solution-based approach of chemical reduction of AuCl4- ions in graphene suspensions. The gold particles anchored on octadecylamine functionalized graphene are readily suspendable in THF medium. The dependence of particle stability on the graphene concentration and SEM analysis indicate that the gold nanoparticles are well dispersed on graphene sheets. Transient absorption spectroscopy measurements suggest that the ultrafast disappearance of plasmon absorption and its recovery are unaffected by the presence of graphene.

886 citations

Journal ArticleDOI
TL;DR: In this paper, a hot-carrier flat-plate quantum device was proposed to convert solar energy with an efficiency of 66%, substantially exceeding the 33% maximum efficiency of a quantum device operating at thermal equilibrium.
Abstract: A single‐threshold quantum‐utilizing device in which the excited carriers thermally equilibrate among themselves, but not with the environment, can convert solar energy with an efficiency approaching that of an infinite‐threshold device. Such a hot‐carrier flat‐plate device operated under typical terrestrial conditions (AM 1.5 illumination, 300 K) can convert solar energy with an efficiency of 66%, substantially exceeding the 33% maximum efficiency of a quantum device operating at thermal equilibrium, and the 52% maximum efficiency of an ideal thermal conversion device. This high efficiency is achieved in part through an unusual inversion, in which the chemical potential of the excited electronic band is below that of the ground band. This negative potential difference reduces radiation losses, permitting a low threshold energy, and a high Carnot efficiency resulting from a high carrier temperature.

839 citations

Journal ArticleDOI
TL;DR: Femtosecond transient absorption studies indicate that the rate constant for electron transfer from the thermalized s-state of CdSe quantum dots increases with decreasing particle size, which can be easily modulated by controlling the particle size.
Abstract: Electron injection from excited CdSe quantum dots into TiO2 nanoparticles can be easily modulated by controlling the particle size. Femtosecond transient absorption studies indicate that the rate constant for electron transfer from the thermalized s-state of CdSe quantum dots increases with decreasing particle size. The energy difference between the conduction bands of the two semiconductor systems acts as a driving force for the electron transfer in the normal Marcus region. An increase in the interparticle electron transfer rate constant by 3 orders of magnitude (from ∼107 to 1010 s-1) has been achieved by decreasing the CdSe particle diameter from 7.5 to 2.4 nm.

815 citations