scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

18 Oct 2008-Journal of Physical Chemistry C (American Chemical Society)-Vol. 112, Iss: 48, pp 18737-18753
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...
Citations
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discussed the steps that have led to this discovery, and the future of this rapidly advancing concept have been considered, and it is likely that the next few years of solar research will advance this technology to the very highest efficiencies while retaining the very lowest cost and embodied energy.
Abstract: Over the last 12 months, we have witnessed an unexpected breakthrough and rapid evolution in the field of emerging photovoltaics, with the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. In this Perspective, the steps that have led to this discovery are discussed, and the future of this rapidly advancing concept have been considered. It is likely that the next few years of solar research will advance this technology to the very highest efficiencies while retaining the very lowest cost and embodied energy. Provided that the stability of the perovskite-based technology can be proven, we will witness the emergence of a contender for ultimately low-cost solar power.

2,506 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors distinguish between conventional solar cells and excitonic solar cells (XSCs) by showing that charge carriers are generated and simultaneously separated across a heterointerface.
Abstract: Existing types of solar cells may be divided into two distinct classes: conventional solar cells, such as silicon p−n junctions, and excitonic solar cells, XSCs. Most organic-based solar cells, including dye-sensitized solar cells, DSSCs, fall into the category of XSCs. In these cells, excitons are generated upon light absorption, and if not created directly at the heterointerface as in DSSCs, they must diffuse to it in order to photogenerate charge carriers. The distinguishing characteristic of XSCs is that charge carriers are generated and simultaneously separated across a heterointerface. In contrast, photogeneration of free electron−hole pairs occurs throughout the bulk semiconductor in conventional cells, and carrier separation upon their arrival at the junction is a subsequent process. This apparently minor mechanistic distinction results in fundamental differences in photovoltaic behavior. For example, the open circuit photovoltage Voc in conventional cells is limited to less than the magnitude of...

812 citations

Journal ArticleDOI
TL;DR: In this paper, a probe−redox couple was used to estimate the apparent Fermi levels of the Au−TiO2 nanocomposite, which is indicative of improved charge separation in semiconductor−metal systems and demonstrates its usefulness for improving the efficiency of photocatalytic reactions.
Abstract: TiO2 nanoparticles when subjected to UV irradiation exhibit blue coloration as electrons are stored within the particles. Upon contact with gold nanoparticles, a partial disappearance of the blue color is seen as the stored electrons are transferred from TiO2 to Au nanoparticles. The charge distribution between the semiconductor and metal nanoparticles causes the Fermi level to shift to more negative potentials. By employing C60/C60•- as a probe−redox couple, we were able to estimate the apparent Fermi levels of TiO2 and TiO2/Au nanoparticles. A Fermi level shift of −22 mV observed for the Au−TiO2 nanocomposite is indicative of improved charge separation in semiconductor−metal systems and demonstrates its usefulness for improving the efficiency of photocatalytic reactions.

797 citations

Journal ArticleDOI
TL;DR: A high surface area pn-heterojunction between TiO2 and an organic p-type charge transport material (spiro-OMeTAD) was sensitized to visible light using lead sulfide (PbS) quantum dots as mentioned in this paper.
Abstract: A high surface area pn-heterojunction between TiO2 and an organic p-type charge transport material (spiro-OMeTAD) was sensitized to visible light using lead sulfide (PbS) quantum dots. PbS quantum dots were formed in situ on a nanocrystalline TiO2 electrode using chemical bath deposition techniques.1 The organic hole conductor was applied from solution to form the sensitized heterojunction. The structure of the quantum dots was analyzed using HRTEM technique. Ultrafast laser photolysis experiments suggested the initial charge separation to proceed in the subpicosecond time range. Transient absorption laser spectroscopy revealed that interfacial charge recombination of the initially formed charge carriers is much faster than in comparable dye-sensitized systems.2,3 The sensitized heterojunction showed incident photon-to-electron conversion efficiencies (IPCE) of up to 45% and energy conversion efficiencies under simulated sunlight AM1.5 (10 mW/cm2) of 0.49%.

749 citations

Journal ArticleDOI
TL;DR: When asked to explain the importance of the discovery of conducting polymers, I offer two basic answers: first they did not (could not?) exist, and second, that they offer a unique combination of properties not available from any other known materials.
Abstract: When asked to explain the importance of the discovery of conducting polymers, I offer two basic answers: First, they did not (could not?) exist; and second, that they offer a unique combination of properties not available from any other known materials. The first is an intellectual challenge; the second expresses a promise for utility in a wide variety of applications.

734 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used single molecule confocal microscopy to study fluorescence intermittency of individual ZnS overcoated CdSe quantum dots (QDs) excited at 488 nm.
Abstract: Single molecule confocal microscopy is used to study fluorescence intermittency of individual ZnS overcoated CdSe quantum dots (QDs) excited at 488 nm The confocal apparatus permits the distribution of “on” and “off” times (ie, periods of sustained fluorescence emission and darkness) to be measured over an unprecedentedly large dynamic range (109) of probability densities, with nonexponential behavior in τoff over a 105 range in time scales In dramatic contrast, these same τoff distributions in all QDs are described with remarkable simplicity over this 109-fold dynamic range by a simple inverse power law, ie, P(τoff)∝1/τoff1+α Such inverse power law behavior is a clear signature of distributed kinetics, such as predicted for (i) an exponential distribution of trap depths or (ii) a distribution of tunneling distances between QD core/interface states This has important statistical implications for all previous studies of fluorescence intermittency in semiconductor QDs and may have broader implications for other systems such as single polymer molecules

703 citations