scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum-enhanced noise radar

18 Mar 2019-Applied Physics Letters (AIP Publishing LLC AIP Publishing)-Vol. 114, Iss: 11, pp 112601
TL;DR: In this article, a two-mode squeezed state, which exhibits continuous-variable entanglement between so-called signal and idler beams, is used as input to the radar system.
Abstract: We propose a protocol for quantum illumination: a quantum-enhanced noise radar. A two-mode squeezed state, which exhibits continuous-variable entanglement between so-called signal and idler beams, is used as input to the radar system. Compared to existing proposals for quantum illumination, our protocol does not require joint measurement of the signal and idler beams. This greatly enhances the practicality of the system by, for instance, eliminating the need for a quantum memory to store the idler. We perform a proof-of-principle experiment in the microwave regime, directly comparing the performance of a two-mode squeezed source to an ideal classical noise source that saturates the classical bound for correlation. We find that, even in the presence of significant added noise and loss, the quantum source outperforms the classical source by as much as an order of magnitude.
Citations
More filters
Journal ArticleDOI
TL;DR: The field of circuit quantum electrodynamics (QED) as discussed by the authors was initiated by Josephson-junction-based superconducting circuits and has become an independent and thriving field of research in its own right.
Abstract: Quantum-mechanical effects at the macroscopic level were first explored in Josephson-junction-based superconducting circuits in the 1980s. In recent decades, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors. The realization that superconducting qubits can be made to strongly and controllably interact with microwave photons, the quantized electromagnetic fields stored in superconducting circuits, led to the creation of the field of circuit quantum electrodynamics (QED), the topic of this review. While atomic cavity QED inspired many of the early developments of circuit QED, the latter has now become an independent and thriving field of research in its own right. Circuit QED allows the study and control of light-matter interaction at the quantum level in unprecedented detail. It also plays an essential role in all current approaches to gate-based digital quantum information processing with superconducting circuits. In addition, circuit QED provides a framework for the study of hybrid quantum systems, such as quantum dots, magnons, Rydberg atoms, surface acoustic waves, and mechanical systems interacting with microwave photons. Here the coherent coupling of superconducting qubits to microwave photons in high-quality oscillators focusing on the physics of the Jaynes-Cummings model, its dispersive limit, and the different regimes of light-matter interaction in this system are reviewed. Also discussed is coupling of superconducting circuits to their environment, which is necessary for coherent control and measurements in circuit QED, but which also invariably leads to decoherence. Dispersive qubit readout, a central ingredient in almost all circuit QED experiments, is also described. Following an introduction to these fundamental concepts that are at the heart of circuit QED, important use cases of these ideas in quantum information processing and in quantum optics are discussed. Circuit QED realizes a broad set of concepts that open up new possibilities for the study of quantum physics at the macro scale with superconducting circuits and applications to quantum information science in the widest sense.

773 citations

Journal ArticleDOI
TL;DR: In this article, a digital phase conjugate receiver based on linear quadrature measurements was proposed to detect room-temperature objects at a distance of 1 meter in a free-space detection setup.
Abstract: Quantum illumination is a powerful sensing technique that employs entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. The promised advantage over classical strategies is particularly evident at low signal powers, a feature which could make the protocol an ideal prototype for non-invasive biomedical scanning or low-power short-range radar. In this work we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields using a Josephson parametric converter to illuminate a room-temperature object at a distance of 1 meter in a free-space detection setup. We implement a digital phase conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits.

88 citations

Journal ArticleDOI
TL;DR: This work generates entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup and implements a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path.
Abstract: Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits.

80 citations

Journal ArticleDOI
TL;DR: This work demonstrates the first full-field imaging system using quantum illumination by an enhanced detection protocol, and achieves a rejection of background and stray light of up to 5.8 and an image contrast improvement up to a factor of 11, which is resilient to both environmental noise and transmission losses.
Abstract: The contrast of an image can be degraded by the presence of background light and sensor noise. To overcome this degradation, quantum illumination protocols have been theorized that exploit the spatial correlations between photon pairs. Here, we demonstrate the first full-field imaging system using quantum illumination by an enhanced detection protocol. With our current technology, we achieve a rejection of background and stray light of up to 5.8 and also report an image contrast improvement up to a factor of 11, which is resilient to both environmental noise and transmission losses. The quantum illumination protocol differs from usual quantum schemes in that the advantage is maintained even in the presence of noise and loss. Our approach may enable laboratory-based quantum imaging to be applied to real-world applications where the suppression of background light and noise is important, such as imaging under low photon flux and quantum LIDAR.

73 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated quantum-enhanced target detection in the presence of large background noise using multidimensional quantum correlations between photon pairs generated through spontaneous parametric down-conversion.
Abstract: In this work we investigate quantum-enhanced target detection in the presence of large background noise using multidimensional quantum correlations between photon pairs generated through spontaneous parametric down-conversion. Until now similar experiments have only utilized one of the photon pairs' many degrees of freedom such as temporal correlations and photon number correlations. Here, we utilized both temporal and spectral correlations of the photon pairs and achieved over an order of magnitude reduction to the background noise and in turn significant reduction to data acquisition time when compared to utilizing only temporal modes. We believe this work represents an important step in realizing a practical, real-time quantum-enhanced target detection system. The demonstrated technique will also be of importance in many other quantum sensing applications and quantum communications.

48 citations

References
More filters
Journal ArticleDOI
Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist

1,878 citations

Journal ArticleDOI
TL;DR: The Peres-Horodecki criterion of positivity under partial transpose is studied in the context of separability of bipartite continuous variable states and turns out to be a necessary and sufficient condition for separability.
Abstract: The Peres-Horodecki criterion of positivity under partial transpose is studied in the context of separability of bipartite continuous variable states. The partial transpose operation admits, in the continuous case, a geometric interpretation as mirror reflection in phase space. This recognition leads to uncertainty principles, stronger than the traditional ones, to be obeyed by all separable states. For all bipartite Gaussian states, the Peres-Horodecki criterion turns out to be a necessary and sufficient condition for separability.

1,796 citations

Journal ArticleDOI
17 Nov 2011-Nature
TL;DR: The dynamical Casimir effect is observed in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length and two-mode squeezing in the emitted radiation is detected, which is a signature of the quantum character of the generation process.
Abstract: One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences-for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process.

864 citations

Journal ArticleDOI
12 Sep 2008-Science
TL;DR: It is shown that for photodetection, quantum illumination with m bits of entanglement can in principle increase the effective signal-to-noise ratio by a factor of 2m, an exponential improvement over unentangled illumination.
Abstract: The use of quantum-mechanically entangled light to illuminate objects can provide substantial enhancements over unentangled light for detecting and imaging those objects in the presence of high levels of noise and loss. Each signal sent out is entangled with an ancilla, which is retained. Detection takes place via an entangling measurement on the returning signal together with the ancilla. This paper shows that for photodetection, quantum illumination with m bits of entanglement can in principle increase the effective signal-to-noise ratio by a factor of 2 m , an exponential improvement over unentangled illumination. The enhancement persists even when noise and loss are so great that no entanglement survives at the detector.

721 citations

Journal ArticleDOI
TL;DR: In this paper, the quadrature-phase amplitudes and two-mode squeezed states were introduced for analyzing two-photon devices, in which photons in the output modes are created or destroyed two at a time.
Abstract: This paper introduces a new formalism for analyzing two-photon devices (e.g., parametric amplifiers and phase-conjugate mirrors), in which photons in the output modes are created or destroyed two at a time. The key property of a two-photon device is that it excites pairs of output modes independently. Thus our new formalism deals with two modes at a time; a continuum multimode description can be built by integrating over independently excited pairs of modes. For a pair of modes at frequencies \ensuremath{\Omega}\ifmmode\pm\else\textpm\fi{}\ensuremath{\epsilon}, we define (i) quadrature-phase amplitudes, which are complex-amplitude operators for modulation at frequency \ensuremath{\epsilon} of waves ``cos[\ensuremath{\Omega}(t-x/c)]'' and ``sin[\ensuremath{\Omega}(t-x/c)]'' and (ii) two-mode squeezed states, which are the output states of an ideal two-photon device. The quadrature-phase amplitudes and the two-mode squeezed states serve as the building blocks for our formalism; their properties and their physical interpretation are extensively investigated.

631 citations

Trending Questions (1)
What is the principle of quantum radar?

Quantum radar operates on quantum illumination principles using entangled microwave photons, enhancing detection performance compared to classical radar by leveraging continuous-variable entanglement without joint measurement.