scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum entanglement in fermionic lattices

14 Mar 2002-Physical Review A (American Physical Society)-Vol. 65, Iss: 4, pp 042101
TL;DR: The Fock space of a system of indistinguishable particles is isomorphic (in a nonunique way) to the state space of composite, i.e., many modes, quantum systems as mentioned in this paper.
Abstract: The Fock space of a system of indistinguishable particles is isomorphic (in a nonunique way) to the state space of a composite, i.e., many modes, quantum system. One can then discuss quantum entanglement for fermionic as well as bosonic systems. We exemplify the use of this notion---central in quantum information---by studying some, e.g., Hubbard, lattice fermionic models relevant to condensed matter physics.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent developments in the physics of ultracold atomic and molecular gases in optical lattices and show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics.
Abstract: We review recent developments in the physics of ultracold atomic and molecular gases in optical lattices. Such systems are nearly perfect realisations of various kinds of Hubbard models, and as such may very well serve to mimic condensed matter phenomena. We show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics. After a short presentation of the models and the methods of treatment of such systems, we discuss in detail, which challenges of condensed matter physics can be addressed with (i) disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii) spinor lattice gases, (iv) lattice gases in “artificial” magnetic fields, and, last but not least, (v) quantum information processing in lattice gases. For completeness, also some recent progress related to the above topics with trapped cold gases will be discussed. Motto: There are more things in heaven and earth, Horatio, Than are dreamt of in your...

1,535 citations

Journal ArticleDOI
TL;DR: An alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev, is developed that reduces the simulation cost to O(log n) qubit operations for one fermionic operation and demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.
Abstract: Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002); e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H(2) requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.

452 citations

Journal ArticleDOI
TL;DR: The results show, for the first time, that entanglement can be used to identify quantum phase transitions in fermionic systems.
Abstract: We study quantum entanglement in a one-dimensional correlated fermionic system. Our results show, for the first time, that entanglement can be used to identify quantum phase transitions in fermionic systems.

366 citations

References
More filters
Book
01 Jan 1993
TL;DR: In this article, the authors introduce the concept of complex vector space and describe a set of properties of composite systems, including Bell's Theorem, and the notion of spacetime symmetry.
Abstract: Preface. Part I: Gathering the Tools. 1. Introduction to Quantum Physics. 2. Quantum Tests. 3. Complex Vector Space. 4. Continuous Variables. Part II: Cryptodeterminism and Quantum Inseparability. 5. Composite Systems. 6. Bell's Theorem. 7. Contextuality. Part III: Quantum Dynamics and Information. 8. Spacetime Symmetries. 9. Information and Thermodynamics. 10. Semiclassical Methods. 11. Chaos and Irreversibility. 12. The Measuring Process. Author Index. Subject Index.

2,851 citations