scispace - formally typeset
Search or ask a question

Quantum Fields in Curved Space

01 Apr 1984-pp 349
TL;DR: A comprehensive review of the subject of gravitational effects in quantum field theory can be found in this paper, where special emphasis is given to the Hawking black hole evaporation effect, and to particle creation processes in the early universe.
Abstract: This book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Although the treatment is general, special emphasis is given to the Hawking black hole evaporation effect, and to particle creation processes in the early universe. The last decade has witnessed a phenomenal growth in this subject. This is the first attempt to collect and unify the vast literature that has contributed to this development. All the major technical results are presented, and the theory is developed carefully from first principles. Here is everything that students or researchers will need to embark upon calculations involving quantum effects of gravity at the so-called one-loop approximation level.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.

3,674 citations

Journal ArticleDOI
TL;DR: Various applications of f(R) theories to cosmology and gravity — such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds are reviewed.
Abstract: Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.

3,375 citations

Journal ArticleDOI
TL;DR: In this article, the three point correlation functions for primordial scalar and tensor fluctuations in single field inflationary models were computed in the slow roll limit, where the answer is given terms of the two usual slow roll parameters.
Abstract: We compute the three point correlation functions for primordial scalar and tensor fluctuations in single field inflationary models We obtain explicit expressions in the slow roll limit where the answer is given terms of the two usual slow roll parameters In a particular limit the three point functions are determined completely by the tilt of the spectrum of the two point functions We also make some remarks on the relation of this computation to dS/CFT and AdS/CFT We emphasize that (A)dS/CFT can be viewed as a statement about the wavefunction of the universe

3,153 citations

Journal ArticleDOI
TL;DR: A review of cosmological constants can be found in this paper, where the authors discuss several aspects of the Cosmological Constant problem from both cosmology and theoretical perspectives.

3,130 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

10,923 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present conditions générales d'utilisation (http://www.numdam.org/conditions), i.e., Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Abstract: © Publications mathématiques de l’I.H.É.S., 1961, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

235 citations

Journal ArticleDOI
TL;DR: The notion of quantum field remains at this time still rather elusive from a rigorous standpoint as mentioned in this paper, and it was recognized very early by Bohr and Rosenfeld that even in the case of a free field, no physical meaning could be attached to the values of the field at a particular point, only the suitably smoothed averages over finite space-time regions had such a meaning.
Abstract: The notion of quantum field remains at this time still rather elusive from a rigorous standpoint. In conventional physical theory such a field is defined in essentially the same way as in the original work of Heisenberg and Pauli (1) by a function ϕ(x, y, z, t) on space-time whose values are operators. It was recognized very early, however, by Bohr and Rosenfeld (2) that, even in the case of a free field, no physical meaning could be attached to the values of the field at a particular point—only the suitably smoothed averages over finite space-time regions had such a meaning. This physical result has a mathematical counterpart in the impossibility of formulating ϕ(x, y, z, t) as a bona fide operator for even the simplest fields (in any fashion satisfying the most elementary non-trivial theoretical desiderata), while on the other hand for suitable functions f, the integral ∫ϕ(x, y, zy t)f(x, y, z, t)dxdydzdt could be so formulated.

135 citations

Journal ArticleDOI
TL;DR: The results of four years of timing observations of PSR 1913+16 made with the 305m telescope at the Arecibo Observatory at frequencies near 430 and 1410 MHz are summarized in this paper.
Abstract: Results of four years of timing observations of PSR 1913+16 made with the 305-m telescope at the Arecibo Observatory at frequencies near 430 and 1410 MHz are summarized. Received intensity data were accumulated for intervals of 5 minutes and the resulting profile was then fitted to a template to determine its precise arrival time. Data on PSR 1913+16 have been acquired using a number of different receivers, dispersion-removing systems, and recording methods in order to improve the measurement accuracy. Random errors in the measured pulse arrival times have been reduced from 300 microseconds in 1974 to 50 microseconds in 1978. Analysis of the timing data was carried out using a model which describes the system in terms of 13 parameters of physical interest. It is found that changes of the orbital period observed during the experiment can be best explained by gravitational radiation damping at a rate consistent with the predictions of general relativity.

27 citations