scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum-sized carbon dots for bright and colorful photoluminescence.

TL;DR: It is reported that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state.
Abstract: We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.
Citations
More filters
Journal ArticleDOI
TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Abstract: Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

3,991 citations

Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations

Journal ArticleDOI
TL;DR: This work compares and evaluates the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs, to provide a better understanding of the advantages and limitations of both classes of chromophores.
Abstract: Suitable labels are at the core of Luminescence and fluorescence imaging and sensing. One of the most exciting, yet also controversial, advances in label technology is the emerging development of quantum dots (QDs)--inorganic nanocrystals with unique optical and chemical properties but complicated surface chemistry--as in vitro and in vivo fluorophores. Here we compare and evaluate the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs. Our aim is to provide a better understanding of the advantages and limitations of both classes of chromophores, to facilitate label choice and to address future challenges in the rational design and manipulation of QD labels.

3,399 citations


Additional excerpts

  • ...[5 9] ....

    [...]

  • ...tis su es [5 9] ....

    [...]

  • ...ve ry w ea k [5 9] [5 6] , [5 5] , [5 8] , [5 9]...

    [...]

Journal ArticleDOI
TL;DR: This Review highlights the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications that are attracting chemists for its own characteristics.
Abstract: Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp(2)- and sp(3)-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp(2)-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

2,937 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width.
Abstract: Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications.

2,925 citations

References
More filters
Journal ArticleDOI
28 Jan 2005-Science
TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Abstract: Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have farreaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

7,499 citations

Journal ArticleDOI
TL;DR: This work found that CdSe-core QDs were indeed acutely toxic under certain conditions and modulated by processing parameters during synthesis, exposure to ultraviolet light, and surface coatings, and suggests that cytotoxicity correlates with the liberation of free Cd2+ ions due to deterioration of the Cd Se lattice.
Abstract: With their bright, photostable fluorescence, semiconductor quantum dots (QDs) show promise as alternatives to organic dyes for biological labeling. Questions about their potential cytotoxicity, however, remain unanswered. While cytotoxicity of bulk cadmium selenide (CdSe) is well documented, a number of groups have suggested that CdSe QDs are cytocompatible, at least with some immortalized cell lines. Using primary hepatocytes as a liver model, we found that CdSe-core QDs were indeed acutely toxic under certain conditions. Specifically, we found that the cytotoxicity of QDs was modulated by processing parameters during synthesis, exposure to ultraviolet light, and surface coatings. Our data further suggest that cytotoxicity correlates with the liberation of free Cd2+ ions due to deterioration of the CdSe lattice. When appropriately coated, CdSe-core QDs can be rendered nontoxic and used to track cell migration and reorganization in vitro. Our results provide information for design criteria for the use of ...

3,236 citations

Journal ArticleDOI
31 Oct 1996-Nature
TL;DR: In this article, it was shown that light emission from single fluorescing nanocrystals of cadmium selenide under continuous excitation turns on and off intermittently with a characteristic timescale of about 0.5 seconds.
Abstract: SEMICONDUCTOR nanocrystals offer the opportunity to study the evolution of bulk materials properties as the size of a system increases from the molecular scale1,2. In addition, their strongly size-dependent optical properties render them attractive candidates as tunable light absorbers and emitters in optoelectronic devices such as light-emitting diodes3,4 and quantum-dot lasers5,6, and as optical probes of biological systems7. Here we show that light emission from single fluorescing nanocrystals of cadmium selenide under continuous excitation turns on and off intermittently with a characteristic timescale of about 0.5 seconds. This intermittency is not apparent from ensemble measurements on many nanocrystals. The dependence on excitation intensity and the change in on/off times when a passivating, high-bandgap shell of zinc sulphide encapsulates the nanocrystal8,9 suggests that the abrupt turning off of luminescence is caused by photo-ionization of the nanocrystal. Thus spectroscopic measurements on single nanocrystals can reveal hitherto unknown aspects of their photophysics.

1,757 citations

Journal ArticleDOI
TL;DR: The data suggest that in addition to the release of toxic Cd(2+) ions from the particles also their surface chemistry, in particular their stability toward aggregation, plays an important role for cytotoxic effects.
Abstract: Cytotoxicity of CdSe and CdSe/ZnS nanoparticles has been investigated for different surface modifications such as coating with mercaptopropionic acid, silanization, and polymer coating. For all cases, quantitative values for the onset of cytotoxic effects in serum-free culture media are given. These values are correlated with microscope images in which the uptake of the particles by the cells has been investigated. Our data suggest that in addition to the release of toxic Cd 2+ ions from the particles also their surface chemistry, in particular their stability toward aggregation, plays an important role for cytotoxic effects. Additional patch clamp experiments investigate effects of the particles on currents through ion channels.

1,581 citations

Journal ArticleDOI
25 Feb 2000-Science
TL;DR: Bulk quantities of defect-free silicon nanowires with nearly uniform diameters were grown to a length of several micrometers with a supercritical fluid solution-phase approach, and visible photoluminescence due to quantum confinement effects was observed, as were discrete optical transitions in the ultraviolet-visible absorbance spectra.
Abstract: Bulk quantities of defect-free silicon (Si) nanowires with nearly uniform diameters ranging from 40 to 50 angstroms were grown to a length of several micrometers with a supercritical fluid solution-phase approach. Alkanethiol-coated gold nanocrystals (25 angstroms in diameter) were used as uniform seeds to direct one-dimensional Si crystallization in a solvent heated and pressurized above its critical point. The orientation of the Si nanowires produced with this method could be controlled with reaction pressure. Visible photoluminescence due to quantum confinement effects was observed, as were discrete optical transitions in the ultraviolet-visible absorbance spectra.

1,535 citations