scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum spin Hall effect in graphene

23 Nov 2005-Physical Review Letters (American Physical Society)-Vol. 95, Iss: 22, pp 226801-226801
TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Abstract: We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations


Cites background from "Quantum spin Hall effect in graphen..."

  • ...The intrin-si and extrinsi spin orbit intera tions an be writtenas (Dresselhaus and Dresselhaus, 1965; Kane and Mele,2005): HSO;int ≡ ∆so ∫ d2rΨ̂†(r)ŝz σ̂z τ̂zΨ̂(r) , HSO;ext ≡ λR ∫ d2rΨ̂†(r)(−ŝxσ̂y+ŝyσ̂xτ̂z)Ψ̂(r) ,(124)where σ̂ and τ̂ are Pauli matri es whi h des ribe the sub-latti e and valley…...

    [...]

  • ...The spin orbit intera tion leads to a spin de-pendent shift of the orbitals, whi h is of a di erent signfor the two sublatti es, a ting as an e e tive mass withinea h Dira point (Dresselhaus and Dresselhaus, 1965;Kane and Mele, 2005; Wang and Chakraborty, 2007a)....

    [...]

Journal ArticleDOI
TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Abstract: We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range ∼(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

11,878 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Abstract: When electrons are confined in two-dimensional materials, quantum-mechanically enhanced transport phenomena such as the quantum Hall effect can be observed. Graphene, consisting of an isolated single atomic layer of graphite, is an ideal realization of such a two-dimensional system. However, its behaviour is expected to differ markedly from the well-studied case of quantum wells in conventional semiconductor interfaces. This difference arises from the unique electronic properties of graphene, which exhibits electron–hole degeneracy and vanishing carrier mass near the point of charge neutrality1,2. Indeed, a distinctive half-integer quantum Hall effect has been predicted3,4,5 theoretically, as has the existence of a non-zero Berry's phase (a geometric quantum phase) of the electron wavefunction—a consequence of the exceptional topology of the graphene band structure6,7. Recent advances in micromechanical extraction and fabrication techniques for graphite structures8,9,10,11,12 now permit such exotic two-dimensional electron systems to be probed experimentally. Here we report an experimental investigation of magneto-transport in a high-mobility single layer of graphene. Adjusting the chemical potential with the use of the electric field effect, we observe an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene. The relevance of Berry's phase to these experiments is confirmed by magneto-oscillations. In addition to their purely scientific interest, these unusual quantum transport phenomena may lead to new applications in carbon-based electronic and magneto-electronic devices.

11,122 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations


Cites background from "Quantum spin Hall effect in graphen..."

  • ...The edge states have a distinct helical property: two states with opposite spin polarization counterpropagate at a given edge (Kane and Mele, 2005; Wuet al., 2006; Xu and Moore, 2006)....

    [...]

  • ...The conceptof spin Hall insulator motivated Kane and Mele in 2005 to investigate the QSH effect in graphene (Kane and Mele, 2005), a material first discovered experimentally that same year....

    [...]

  • ...Some important concepts were developed in earlier works (Bernevig and Zhang, 2006; Haldane, 1988; Kane and Mele, 2005; Murakamiet al., 2003, 2004; Sinovaet al., 2004; Zhang and Hu, 2001), culminating in the construction of the topological band theory (TBT) and the 3 TFT of 2D and 3D topological…...

    [...]

  • ...More generally, the topological properties of the QSH state are mathematically characterized by aZ2 topological invariant (Kane and Mele, 2005)....

    [...]

  • ...The physical picture described above applies only to the case of a single pair of QSH edge states (Kane and Mele, 2005; Wuet al., 2006; Xu and Moore, 2006)....

    [...]

Journal Article
TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Abstract: When electrons are confined in two-dimensional materials, quantum-mechanically enhanced transport phenomena such as the quantum Hall effect can be observed. Graphene, consisting of an isolated single atomic layer of graphite, is an ideal realization of such a two-dimensional system. However, its behaviour is expected to differ markedly from the well-studied case of quantum wells in conventional semiconductor interfaces. This difference arises from the unique electronic properties of graphene, which exhibits electron–hole degeneracy and vanishing carrier mass near the point of charge neutrality. Indeed, a distinctive half-integer quantum Hall effect has been predicted theoretically, as has the existence of a non-zero Berry's phase (a geometric quantum phase) of the electron wavefunction—a consequence of the exceptional topology of the graphene band structure. Recent advances in micromechanical extraction and fabrication techniques for graphite structures now permit such exotic two-dimensional electron systems to be probed experimentally. Here we report an experimental investigation of magneto-transport in a high-mobility single layer of graphene. Adjusting the chemical potential with the use of the electric field effect, we observe an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene. The relevance of Berry's phase to these experiments is confirmed by magneto-oscillations. In addition to their purely scientific interest, these unusual quantum transport phenomena may lead to new applications in carbon-based electronic and magneto-electronic devices.

10,112 citations