scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum Theory of Gravity. I. The Canonical Theory

25 Aug 1967-Physical Review (American Physical Society)-Vol. 160, Iss: 5, pp 1113-1148
TL;DR: In this article, a 6-dimensional hyperbolic Riemannian manifold is introduced, which takes for its metric the coefficient of the momenta in the Hamiltonian constraint and the geodesic incompletability of this manifold, owing to the existence of a frontier of infinite curvature, is demonstrated.
Abstract: Following an historical introduction, the conventional canonical formulation of general relativity theory is presented. The canonical Lagrangian is expressed in terms of the extrinsic and intrinsic curvatures of the hypersurface ${x}^{0}=\mathrm{constant}$, and its relation to the asymptotic field energy in an infinite world is noted. The distinction between finite and infinite worlds is emphasized. In the quantum theory the primary and secondary constraints become conditions on the state vector, and in the case of finite worlds these conditions alone govern the dynamics. A resolution of the factor-ordering problem is proposed, and the consistency of the constraints is demonstrated. A 6-dimensional hyperbolic Riemannian manifold is introduced which takes for its metric the coefficient of the momenta in the Hamiltonian constraint. The geodesic incompletability of this manifold, owing to the existence of a frontier of infinite curvature, is demonstrated. The possibility is explored of relating this manifold to an infinite-dimensional manifold of 3-geometries, and of relating the structure of the latter manifold in turn to the dynamical behavior of space-time. The problem is approached through the WKB approximation and Hamilton-Jacobi theory. Einstein's equations are revealed as geodesic equations in the manifold of 3-geometries, modified by the presence of a "force term." The classical phenomenon of gravitational collapse shows that the force term is not powerful enough to prevent the trajectory of space-time from running into the frontier. The as-yet unresolved problem of determining when the collapse phenomenon represents a real barrier to the quantum-state functional is briefly discussed, and a boundary condition at the barrier is proposed. The state functional of a finite world can depend only on the 3-geometry of the hypersurface ${x}^{0}=\mathrm{constant}$. The label ${x}^{0}$ itself is irrelevant, and "time" must be determined intrinsically. A natural definition for the inner product of two such state functionals is introduced which, however, encounters difficulties with negative probabilities owing to the barrier boundary condition. In order to resolve these difficulties, a simplified model, the quantized Friedmann universe, is studied in detail. In order to obtain nonstatic wave functions which resemble a universe evolving, it is necessary to introduce a clock. In order that the combined wave functions of universe-cum-clock be normalizable, it turns out that the periods of universe and clock must be commensurable. Wave packets exhibiting quasiclassical behavior are constructed, and attention is called to the phenomenological character of "time." The innerproduct definition is rescued from its negative-probability difficulties by making use of the fact that probability flows in a closed finite circuit in configuration space. The article ends with some speculations on the uniqueness of the state functional of the actual universe. It is suggested that a viewpoint due to Everett should be adopted in its interpretation.
Citations
More filters
Journal ArticleDOI
TL;DR: Extended Theories of Gravity as discussed by the authors can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales, which is an approach that, by preserving the undoubtedly positive results of Einstein's theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics.

2,776 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered a modified theory of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and of the trace of the stress-energy tensor.
Abstract: We consider $f(R,T)$ modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar $R$ and of the trace of the stress-energy tensor $T$. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. Generally, the gravitational field equations depend on the nature of the matter source. The field equations of several particular models, corresponding to some explicit forms of the function $f(R,T)$, are also presented. An important case, which is analyzed in detail, is represented by scalar field models. We write down the action and briefly consider the cosmological implications of the $f(R,{T}^{\ensuremath{\phi}})$ models, where ${T}^{\ensuremath{\phi}}$ is the trace of the stress-energy tensor of a self-interacting scalar field. The equations of motion of the test particles are also obtained from a variational principle. The motion of massive test particles is nongeodesic, and takes place in the presence of an extra-force orthogonal to the four velocity. The Newtonian limit of the equation of motion is further analyzed. Finally, we provide a constraint on the magnitude of the extra acceleration by analyzing the perihelion precession of the planet Mercury in the framework of the present model.

1,833 citations

Journal ArticleDOI
TL;DR: In this article, the Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois, USA Peter B. GILKEY Fine Hall, Box 37.

1,514 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that if the phase space of general relativity is defined so as to contain the trajectories representing solutions of the equations of motion then, for asymptotically flat spaces, the Hamiltonian does not vanish but its value is given rather by a nonzero surface integral.

1,365 citations

Book
30 Sep 1997
TL;DR: Calculus of smooth mappings Calculus of holomorphic and real analytic mappings Partitions of unity Smoothly real compact spaces Extensions and liftings of mappings Infinite dimensional manifolds Calculus on infinite dimensional manifold, infinite dimensional differential geometry Manifolds of Mappings Further applications References as mentioned in this paper.
Abstract: Introduction Calculus of smooth mappings Calculus of holomorphic and real analytic mappings Partitions of unity Smoothly realcompact spaces Extensions and liftings of mappings Infinite dimensional manifolds Calculus on infinite dimensional manifolds Infinite dimensional differential geometry Manifolds of mappings Further applications References Index.

1,291 citations