# Quantum theory, the Church-Turing principle and the universal quantum computer

08 Jul 1985-Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences (The Royal Society)-Vol. 400, Iss: 1818, pp 97-117

Abstract: It is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion. Here, this assertion is presented explicitly as a physical principle: ‘every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means’. Classical physics and the universal Turing machine, because the former is continuous and the latter discrete, do not obey the principle, at least in the strong form above. A class of model computing machines that is the quantum generalization of the class of Turing machines is described, and it is shown that quantum theory and the ‘universal quantum computer’ are compatible with the principle. Computing machines resembling the universal quantum computer could, in principle, be built and would have many remarkable properties not reproducible by any Turing machine. These do not include the computation of non-recursive functions, but they do include ‘quantum parallelism’, a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it. The intuitive explanation of these properties places an intolerable strain on all interpretations of quantum theory other than Everett’s. Some of the numerous connections between the quantum theory of computation and the rest of physics are explored. Quantum complexity theory allows a physically more reasonable definition of the ‘complexity’ or ‘knowledge’ in a physical system than does classical complexity theory.

Topics: Quantum Turing machine (75%), Church–Turing–Deutsch principle (70%), Quantum complexity theory (70%), Quantum algorithm (68%), Universal Turing machine (67%)

##### Citations

More filters

••

[...]

Abstract: All our former experience with application of quantum theory seems to say:
{\it what is predicted by quantum formalism must occur in laboratory} But the
essence of quantum formalism - entanglement, recognized by Einstein, Podolsky,
Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a
new resource as real as energy This holistic property of compound quantum systems, which involves
nonclassical correlations between subsystems, is a potential for many quantum
processes, including ``canonical'' ones: quantum cryptography, quantum
teleportation and dense coding However, it appeared that this new resource is
very complex and difficult to detect Being usually fragile to environment, it
is robust against conceptual and mathematical tools, the task of which is to
decipher its rich structure This article reviews basic aspects of entanglement including its
characterization, detection, distillation and quantifying In particular, the
authors discuss various manifestations of entanglement via Bell inequalities,
entropic inequalities, entanglement witnesses, quantum cryptography and point
out some interrelations They also discuss a basic role of entanglement in
quantum communication within distant labs paradigm and stress some
peculiarities such as irreversibility of entanglement manipulations including
its extremal form - bound entanglement phenomenon A basic role of entanglement
witnesses in detection of entanglement is emphasized

5,916 citations

••

20 Nov 1994

TL;DR: Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored are given.

Abstract: A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. We thus give the first examples of quantum cryptanalysis. >

5,655 citations

••

01 Jul 1996

Abstract: were proposed in the early 1980’s [Benioff80] and shown to be at least as powerful as classical computers an important but not surprising result, since classical computers, at the deepest level, ultimately follow the laws of quantum mechanics. The description of quantum mechanical computers was formalized in the late 80’s and early 90’s [Deutsch85][BB92] [BV93] [Yao93] and they were shown to be more powerful than classical computers on various specialized problems. In early 1994, [Shor94] demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers. This is the problem of integer factorization, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) . ----------------------------------------------

5,636 citations

••

Chetan Nayak

^{1}, Steven H. Simon^{2}, Ady Stern^{3}, Michael H. Freedman^{1}+1 more•Institutions (4)Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{
u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{
u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

3,785 citations

••

TL;DR: U(2) gates are derived, which derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number of unitary operations on arbitrarily many bits.

Abstract: We show that a set of gates that consists of all one-bit quantum gates (U(2)) and the two-bit exclusive-or gate (that maps Boolean values (x,y) to (x,x ⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n )) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number required for arbitrary n-bit unitary operations.

3,232 citations

##### References

More filters

••

Abstract: THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables These additional variables were to restore to the theory causality and locality [2] In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible These attempts have been examined elsewhere [4] and found wanting Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed That particular interpretation has indeed a grossly nonlocal structure This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions

9,550 citations

•

01 Jan 1934Abstract: Described by the philosopher A.J. Ayer as a work of 'great originality and power', this book revolutionized contemporary thinking on science and knowledge. Ideas such as the now legendary doctrine of 'falsificationism' electrified the scientific community, influencing even working scientists, as well as post-war philosophy. This astonishing work ranks alongside The Open Society and Its Enemies as one of Popper's most enduring books and contains insights and arguments that demand to be read to this day.

7,892 citations

••

Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.

5,831 citations

••

Abstract: From the Publisher:
Winner of the Pulitzer Prize, this book applies Godel's seminal contribution to modern mathematics to the study of the human mind and the development of artificial intelligence.

1,951 citations

••

Abstract: We present evidence for the existence of a universal upper bound of magnitude $\frac{2\ensuremath{\pi}R}{\ensuremath{\hbar}c}$ to the entropy-to-energy ratio $\frac{S}{E}$ of an arbitrary system of effective radius $R$. For systems with negligible self-gravity, the bound follows from application of the second law of thermodynamics to a gedanken experiment involving a black hole. Direct statistical arguments are also discussed. A microcanonical approach of Gibbons illustrates for simple systems (gravitating and not) the reason behind the bound, and the connection of $R$ with the longest dimension of the system. A more general approach establishes the bound for a relativistic field system contained in a cavity of arbitrary shape, or in a closed universe. Black holes also comply with the bound; in fact they actually attain it. Thus, as long suspected, black holes have the maximum entropy for given mass and size which is allowed by quantum theory and general relativity.

975 citations