scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum theory, the Church-Turing principle and the universal quantum computer

TL;DR: In this paper, it is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion: every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means.
Abstract: It is argued that underlying the Church-Turing hypothesis there is an implicit physical assertion. Here, this assertion is presented explicitly as a physical principle: ‘every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means’. Classical physics and the universal Turing machine, because the former is continuous and the latter discrete, do not obey the principle, at least in the strong form above. A class of model computing machines that is the quantum generalization of the class of Turing machines is described, and it is shown that quantum theory and the ‘universal quantum computer’ are compatible with the principle. Computing machines resembling the universal quantum computer could, in principle, be built and would have many remarkable properties not reproducible by any Turing machine. These do not include the computation of non-recursive functions, but they do include ‘quantum parallelism’, a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it. The intuitive explanation of these properties places an intolerable strain on all interpretations of quantum theory other than Everett’s. Some of the numerous connections between the quantum theory of computation and the rest of physics are explored. Quantum complexity theory allows a physically more reasonable definition of the ‘complexity’ or ‘knowledge’ in a physical system than does classical complexity theory.

Content maybe subject to copyright    Report

Citations
More filters
MonographDOI
20 Apr 2009
TL;DR: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory and can be used as a reference for self-study for anyone interested in complexity.
Abstract: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory. Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

2,965 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems.
Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed to be able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, for example, the number of digits of the integer to be factored.

2,856 citations

Journal ArticleDOI
23 Aug 1996-Science
TL;DR: Feynman's 1982 conjecture, that quantum computers can be programmed to simulate any local quantum system, is shown to be correct.
Abstract: Feynman's 1982 conjecture, that quantum computers can be programmed to simulate any local quantum system, is shown to be correct.

2,678 citations

Journal ArticleDOI
TL;DR: A class of problems is described which can be solved more efficiently by quantum computation than by any classical or stochastic method.
Abstract: A class of problems is described which can be solved more efficiently by quantum computation than by any classical or stochastic method. The quantum computation solves the problem with certainty in exponentially less time than any classical deterministic computation.

2,509 citations

Journal ArticleDOI
A. R. Calderbank1, Peter W. Shor1
TL;DR: The techniques investigated in this paper can be extended so as to reduce the accuracy required for factorization of numbers large enough to be difficult on conventional computers appears to be closer to one part in billions.
Abstract: With the realization that computers that use the interference and superposition principles of quantum mechanics might be able to solve certain problems, including prime factorization, exponentially faster than classical computers @1#, interest has been growing in the feasibility of these quantum computers, and several methods for building quantum gates and quantum computers have been proposed @2,3#. One of the most cogent arguments against the feasibility of quantum computation appears to be the difficulty of eliminating error caused by inaccuracy and decoherence @4#. Whereas the best experimental implementations of quantum gates accomplished so far have less than 90% accuracy @5#, the accuracy required for factorization of numbers large enough to be difficult on conventional computers appears to be closer to one part in billions. We hope that the techniques investigated in this paper can eventually be extended so as to reduce this quantity by several orders of magnitude. In the storage and transmission of digital data, errors can be corrected by using error-correcting codes @6#. In digital computation, errors can be corrected by using redundancy; in fact, it has been shown that fairly unreliable gates could be assembled to form a reliable computer @7#. It has widely been assumed that the quantum no-cloning theorem @8# makes error correction impossible in quantum communication and computation because redundancy cannot be obtained by duplicating quantum bits. This argument was shown to be in error for quantum communication in Ref. @9#, where a code was given that mapped one qubit ~two-state quantum system! into nine qubits so that the original qubit could be recovered perfectly even after arbitrary decoherence of any one of these nine qubits. This gives a quantum code on nine qubits with a rate 1

2,176 citations

References
More filters
Journal ArticleDOI
01 Nov 1964-Physics
TL;DR: In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Abstract: THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables These additional variables were to restore to the theory causality and locality [2] In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible These attempts have been examined elsewhere [4] and found wanting Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed That particular interpretation has indeed a grossly nonlocal structure This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions

10,253 citations

Book
01 Jan 1934
TL;DR: The Open Society and Its Enemies as discussed by the authors is regarded as one of Popper's most enduring books and contains insights and arguments that demand to be read to this day, as well as many of the ideas in the book.
Abstract: Described by the philosopher A.J. Ayer as a work of 'great originality and power', this book revolutionized contemporary thinking on science and knowledge. Ideas such as the now legendary doctrine of 'falsificationism' electrified the scientific community, influencing even working scientists, as well as post-war philosophy. This astonishing work ranks alongside The Open Society and Its Enemies as one of Popper's most enduring books and contains insights and arguments that demand to be read to this day.

7,904 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.
Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.

6,591 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply Godel's seminal contribution to modern mathematics to the study of the human mind and the development of artificial intelligence, and apply it to the case of artificial neural networks.
Abstract: From the Publisher: Winner of the Pulitzer Prize, this book applies Godel's seminal contribution to modern mathematics to the study of the human mind and the development of artificial intelligence.

1,983 citations

Journal ArticleDOI
TL;DR: For systems with negligible self-gravity, the bound follows from application of the second law of thermodynamics to a gedanken experiment involving a black hole as discussed by the authors, and it is shown that black holes have the maximum entropy for given mass and size which is allowed by quantum theory and general relativity.
Abstract: We present evidence for the existence of a universal upper bound of magnitude $\frac{2\ensuremath{\pi}R}{\ensuremath{\hbar}c}$ to the entropy-to-energy ratio $\frac{S}{E}$ of an arbitrary system of effective radius $R$. For systems with negligible self-gravity, the bound follows from application of the second law of thermodynamics to a gedanken experiment involving a black hole. Direct statistical arguments are also discussed. A microcanonical approach of Gibbons illustrates for simple systems (gravitating and not) the reason behind the bound, and the connection of $R$ with the longest dimension of the system. A more general approach establishes the bound for a relativistic field system contained in a cavity of arbitrary shape, or in a closed universe. Black holes also comply with the bound; in fact they actually attain it. Thus, as long suspected, black holes have the maximum entropy for given mass and size which is allowed by quantum theory and general relativity.

1,079 citations