scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantum transport simulations in a programmable nanophotonic processor

TL;DR: In this paper, the role of disorder in quantum transport using a nanophotonic processor is fully mapped using a mesh of 88 generalized beamsplitters programmable on microsecond timescales.
Abstract: Environmental noise and disorder play critical roles in quantum particle and wave transport in complex media, including solid-state and biological systems. While separately both effects are known to reduce transport, recent work predicts that in a limited region of parameter space, noise-induced dephasing can counteract localization effects, leading to enhanced quantum transport. Photonic integrated circuits are promising platforms for studying such effects, with a central goal of developing large systems providing low-loss, high-fidelity control over all parameters of the transport problem. Here, we fully map the role of disorder in quantum transport using a nanophotonic processor: a mesh of 88 generalized beamsplitters programmable on microsecond timescales. Over 64,400 experiments we observe distinct transport regimes, including environment-assisted quantum transport and the ‘quantum Goldilocks’ regime in statically disordered discrete-time systems. Low-loss and high-fidelity programmable transformations make this nanophotonic processor a promising platform for many-boson quantum simulation experiments. A large-scale, low-loss and phase-stable programmable nanophotonic processor is fabricated to explore quantum transport phenomena. The signature of environment-assisted quantum transport in discrete-time systems is observed for the first time.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.
Abstract: Quantum technologies comprise an emerging class of devices capable of controlling superposition and entanglement of quantum states of light or matter, to realize fundamental performance advantages over ordinary classical machines. The technology of integrated quantum photonics has enabled the generation, processing and detection of quantum states of light at a steadily increasing scale and level of complexity, progressing from few-component circuitry occupying centimetre-scale footprints and operating on two photons, to programmable devices approaching 1,000 components occupying millimetre-scale footprints with integrated generation of multiphoton states. This Review summarizes the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing. This Review covers recent progress in integrated quantum photonics (IQP) technologies and their applications. The challenges and opportunities of realizing large-scale, monolithic IQP circuits for future quantum applications are discussed.

596 citations

Journal ArticleDOI
TL;DR: The maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfiguration similar to electronic devices.
Abstract: Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics. This Review discusses recent advances of microwave photonic technologies and their applications in communications and information processing, as well as their potential implementations in quantum and neuromorphic photonics.

532 citations

Journal ArticleDOI
20 Apr 2018-Science
TL;DR: A multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement is demonstrated, and a programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit.
Abstract: The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

528 citations

Journal ArticleDOI
08 Oct 2020-Nature
TL;DR: Generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication.
Abstract: The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication. The current state of programmable photonic integrated circuits is discussed, including recent developments in their building blocks, circuit architectures, electronic control and programming strategies, as well as different application spaces.

521 citations

Journal ArticleDOI
TL;DR: This Review summarizes the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.
Abstract: Generations of technologies with fundamentally new information processing capabilities will emerge if microscopic physical systems can be controlled to encode, transmit, and process quantum information, at scale and with high fidelity. In the decade after its 2008 inception, the technology of integrated quantum photonics enabled the generation, processing, and detection of quantum states of light, at a steadily increasing scale and level of complexity. Using both established and advanced fabrication techniques, the field progressed from the demonstrations of fixed circuits comprising few components and operating on two photons, to programmable circuitry approaching 1000 components with integrated generation of multi-photon states. A continuation in this trend over the next decade would usher in a versatile platform for future quantum technologies. This Review summarises the advances in integrated photonic quantum technologies (materials, devices, and functionality), and its demonstrated on-chip applications including secure quantum communications, simulations of quantum physical and chemical systems, Boson sampling, and linear-optic quantum information processing.

433 citations


Cites background or methods from "Quantum transport simulations in a ..."

  • ...emely low-error single-qubit and two-qubit operations (Box 2), key for on-chip quantum information processing. Si-based MZIs with a 65dB on-off ratio has been achieved with near-perfect beamsplitters [41], equivalent to having a Pauli-Z error rate of < 10−6 [42]. With ultra-high precise operations and measurements, the overhead resources for MBQC can be significantly reduced. The high levels of con...

    [...]

  • ...ond was interfaced, and the former was used to simulate the dynamics of the latter. Figure reproduced from: a, ref. [97], AAAS; b, ref. [57, 58], APS; c, ref. [105], Macmillan Publishers Ltd; d, ref. [41], Macmillan Publishers Ltd; e, ref. [79], Macmillan Publishers Ltd; f, ref. [82], Macmillan Publishers Ltd; g, ref. [115], Macmillan Publishers Ltd. Fig. 6 Towards large-scale quantum photonic circuit...

    [...]

  • ...dentify signature of bosonic coalescence [107], to simulate Fano resonance [108], to shed light on the interplay between quantum coherence and noise for assist transport processes in complex networks [40, 41, 109] (Fig.5d), and to quantum fast hitting on hexagonal graphs [110]. The adoption of laserwriting technology has been adopted to engineer chip with 3D geometry leading to implementations of 2D QW for the...

    [...]

References
More filters
Journal ArticleDOI
Philip W. Anderson1
TL;DR: In this article, a simple model for spin diffusion or conduction in the "impurity band" is presented, which involves transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites.
Abstract: This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity band." These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites. In this simple model the essential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

9,647 citations

Journal ArticleDOI
04 Jan 2001-Nature
TL;DR: It is shown that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors and are robust against errors from photon loss and detector inefficiency.
Abstract: Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.

5,236 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations

Journal ArticleDOI
TL;DR: An algorithmic proof that any discrete finite-dimensional unitary operator can be constructed in the laboratory using optical devices is given, and optical experiments with any type of radiation exploring higher-dimensional discrete quantum systems become feasible.
Abstract: An algorithmic proof that any discrete finite-dimensional unitary operator can be constructed in the laboratory using optical devices is given. Our recursive algorithm factorizes any N\ifmmode\times\else\texttimes\fi{}N unitary matrix into a sequence of two-dimensional beam splitter transformations. The experiment is built from the corresponding devices. This also permits the measurement of the observable corresponding to any discrete Hermitian matrix. Thus optical experiments with any type of radiation (photons, atoms, etc.) exploring higher-dimensional discrete quantum systems become feasible.

1,699 citations

Journal ArticleDOI
TL;DR: This article will introduce quantum random walks, review some of their properties and outline their striking differences to classical walks, introducing some of the main concepts and language of present day quantum information science in this context.
Abstract: This article aims to provide an introductory survey on quantum random walks. Starting from a physical effect to illustrate the main ideas we will introduce quantum random walks, review some of their properties and outline their striking differences to classical walks. We will touch upon both physical effects and computer science applications, introducing some of the main concepts and language of present day quantum information science in this context. We will mention recent developments in this new area and outline some open questions.

1,574 citations