scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quark-meson coupling model for finite nuclei

01 Jul 1996-Physical Review C (Phys Rev C Nucl Phys)-Vol. 54, Iss: 1, pp 359-370
TL;DR: A perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus is developed, based on a fit to the equilibrium properties of nuclear matter.
Abstract: A Quark-Meson Coupling (QMC) model is extended to finite nuclei in the relativistic mean-field or Hartree approximation. The ultra-relativistic quarks are assumed to be bound in non-overlapping nucleon bags, and the interaction between nucleons arises from a coupling of vector and scalar meson fields to the quarks. We develop a perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus. Results of calculations for spherical nuclei are given, based on a fit to the equilibrium properties of nuclear matter. Several possible extensions of the model are also considered.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the EMC effect for valence quarks, a reduction in the Deep Inelastic Scattering (DIS) cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon Short-Range Correlations (SRC) in nuclei are discussed.
Abstract: This article reviews our current understanding of how the internal quark structure of a nucleon bound in nuclei differs from that of a free nucleon. We focus on the interpretation of measurements of the EMC effect for valence quarks, a reduction in the Deep Inelastic Scattering (DIS) cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon Short-Range Correlations (SRC) in nuclei. Our review and new analysis (involving the amplitudes of non-nucleonic configurations in the nucleus) of the available experimental and theoretical evidence shows that there is a phenomenological relation between the EMC effect and the effects of SRC that is not an accident. The influence of strongly correlated neutron-proton pairs involving highly virtual nucleons is responsible for both effects. These correlated pairs are temporary high-density fluctuations in the nucleus in which the internal structure of the nucleons is briefly modified. This conclusion needs to be solidified by the future experiments and improved theoretical analyses that are discussed herein.

260 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of hadron structure changes in a nuclear medium using the quark-meson coupling (QMC) model is studied, which is based on a mean field description of non-overlapping nucleon (or baryon) bags bound by the self-consistent exchange of scalar and vector mesons in the isoscalar and isovector channels.

196 citations

Journal ArticleDOI
TL;DR: In this article, the quark-meson coupling model was extended to investigate the change of hadron properties in finite nuclei, and a simple scaling relation for the changes of the hadron masses was found, which can be described in terms of the number of nonstrange quarks in a hadron and the value of the scalar mean field in a nucleus.
Abstract: The quark-meson coupling model, based on a mean-field description of nonoverlapping nucleon bags bound by the self-consistent exchange of $\ensuremath{\sigma}$, $\ensuremath{\omega}$, and $\ensuremath{\rho}$ mesons, is extended to investigate the change of hadron properties in finite nuclei. Relativistic Hartree equations for spherical nuclei have been derived from a relativistic quark model of the structure of bound nucleons and mesons. Using this unified, self-consistent description of both infinite nuclear matter and finite nuclei, we investigate the properties of some closed-shell nuclei and study the changes in the hadron masses of the nonstrange vector mesons, the hyperons, and the nucleon in those nuclei. We find a new, simple scaling relation for the changes of the hadron masses, which can be described in terms of the number of nonstrange quarks in the hadron and the value of the scalar mean field in a nucleus.

119 citations

Journal ArticleDOI
TL;DR: In this article, the quark-meson coupling (QMC) model is applied to a systematic study of Λ, Σ and Ξ hypernuclei, and the model automatically leads to a very weak spin-orbit interaction for the Λ in a hyper-nucleus.

99 citations

01 Jan 1996
TL;DR: In this paper, the quark-meson coupling model was extended to investigate the change of hadron properties in finite nuclei, and a simple scaling relation for the changes of the hadron masses was found, which can be described in terms of the number of nonstrange quarks in a hadron and the value of the scalar mean field in a nucleus.
Abstract: The quark-meson coupling model, based on a mean-field description of nonoverlapping nucleon bags bound by the self-consistent exchange of $\ensuremath{\sigma}$, $\ensuremath{\omega}$, and $\ensuremath{\rho}$ mesons, is extended to investigate the change of hadron properties in finite nuclei. Relativistic Hartree equations for spherical nuclei have been derived from a relativistic quark model of the structure of bound nucleons and mesons. Using this unified, self-consistent description of both infinite nuclear matter and finite nuclei, we investigate the properties of some closed-shell nuclei and study the changes in the hadron masses of the nonstrange vector mesons, the hyperons, and the nucleon in those nuclei. We find a new, simple scaling relation for the changes of the hadron masses, which can be described in terms of the number of nonstrange quarks in the hadron and the value of the scalar mean field in a nucleus.

92 citations