scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238−1904

21 Dec 2013-Monthly Notices of the Royal Astronomical Society (Oxford University Press)-Vol. 436, Iss: 4, pp 3286-3305
TL;DR: In this article, absorption troughs from three important ions are measured: O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionisation phase of the outflow.
Abstract: Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a variety of plausible subresolution models were proposed to estimate the inflow to and outflow from forming galaxies because observations indicating low formation efficiency and strong circumgalactic presence of gas are persuasive.
Abstract: Numerical simulations have become a major tool for understanding galaxy formation and evolution. Over the decades the field has made significant progress. It is now possible to simulate the formation of individual galaxies and galaxy populations from well-defined initial conditions with realistic abundances and global properties. An essential component of the calculation is to correctly estimate the inflow to and outflow from forming galaxies because observations indicating low formation efficiency and strong circumgalactic presence of gas are persuasive. Energetic “feedback” from massive stars and accreting supermassive black holes—generally unresolved in cosmological simulations—plays a major role in driving galactic outflows, which have been shown to regulate many aspects of galaxy evolution. A surprisingly large variety of plausible subresolution models succeeds in this exercise. They capture the essential characteristics of the problem, i.e., outflows regulating galactic gas flows, but their predicti...

434 citations

Journal ArticleDOI
TL;DR: In this article, the authors conduct kinematic analysis of the SDSS spectra of 568 obscured luminous quasars, with the emphasis on the Kinematic structure of the [OIII]5007 emission line.
Abstract: We conduct kinematic analysis of the SDSS spectra of 568 obscured luminous quasars, with the emphasis on the kinematic structure of the [OIII]5007 emission line. [OIII] emission tends to show blueshifts and blue excess, which indicates that at least part of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90% of line power ranges from 370 to 4780 km/sec, suggesting outflow velocities up to 2000 km/sec. The velocity width of the [OIII] emission is positively correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of nu L_nu[1.4GHz] = 10^40 erg/sec suggests a median kinetic luminosity of the quasar-driven wind of L_wind=3x10^44 erg/sec, or about 4% of the estimated median bolometric luminosity L_bol=8x10^45 erg/sec. Furthermore, the velocity width of [OIII] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. As the outflow velocity increases, some emission lines characteristic of shocks in quasi-neutral medium increase as well, which we take as further evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. None of the kinematic components show correlations with the stellar velocity dispersions of the host galaxies, so there is no evidence that any of the gas in the narrow-line region of quasars is in dynamical equilibrium with the host galaxy. Quasar feedback appears to operate above the threshold luminosity of L_bol=3x10^45 erg/sec.

329 citations


Cites background from "Quasar outflows and AGN feedback in..."

  • ...…active galaxies, where the radiativelydriven wind would get quenched by the interaction with the interstellar medium, but could be typical of quasardriven winds (Moe et al. 2009; Zubovas & King 2012; Faucher-Giguère & Quataert 2012) even on galaxy-wide scales (Arav et al. 2013; Liu et al. 2013b)....

    [...]

Journal ArticleDOI
20 Feb 2015-Science
TL;DR: A signature in x-ray spectra of a strong persistent outflow in the quasar PDS 456 is seen, estimating a broad solid angle spanned by the wind that enables a far greater impact on the host galaxy than narrower jet outflows.
Abstract: The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow’s kinetic power larger than 1046 ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution.

257 citations

Journal ArticleDOI
TL;DR: Forster Schreiber et al. as discussed by the authors used a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys to detect broad nuclear emission (FWHM) in the Ha, [NII], and [SII] lines.
Abstract: In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, [NII], and [SII] lines ~ 450-5300 km/s), with large [NII]/Ha ratios, above log(M*/Msun) ~ 10.9, with about two thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

243 citations

Journal ArticleDOI
TL;DR: In this article, the authors follow up on their previous detection of nuclear ionized outflows in the most massive (log(M */M ☉) ≥ 10.9) z ~ 1-3 star-forming galaxies by increasing the sample size by a factor of six.
Abstract: In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ☉) ≥ 10.9) z ~ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ☉) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ~450-5300 km s–1), with large [N II]/Hα ratios, above log(M */M ☉) ~ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ~ 1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

233 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations


"Quasar outflows and AGN feedback in..." refers methods in this paper

  • ...We model the de-reddened (RV = 3.1, E(B − V ) = 0.032 (Schlegel et al. 1998)) continuum emission of HE0238-1904 using a single power law of the form F(λ) = F1100(λ/1100) α....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Abstract: We present a full sky 100 micron map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 micron and 240 micron data, we have constructed a map of the dust temperature, so that the 100 micron map can be converted to a map proportional to dust column density. The result of these manipulations is a map with DIRBE-quality calibration and IRAS resolution. To generate the full sky dust maps, we must first remove zodiacal light contamination as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 micron DIRBE map against the Leiden- Dwingeloo map of H_I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 micron flux. For the 100 micron map, no significant CIB is detected. In the 140 micron and 240 micron maps, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 \pm 13 nW/m^2/sr at 140 micron, and 17 \pm 4 nW/m^2/sr at 240 micron (95% confidence). This integrated flux is ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles estimates in regions of low and moderate reddening. These dust maps will also be useful for estimating millimeter emission that contaminates CMBR experiments and for estimating soft X-ray absorption.

14,295 citations

Journal ArticleDOI
10 Feb 2005-Nature
TL;DR: Simulations that simultaneously follow star formation and the growth of black holes during galaxy–galaxy collisions find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar.
Abstract: In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

3,330 citations


"Quasar outflows and AGN feedback in..." refers background in this paper

  • ...…of observations, from the chemical enrichment of the intergalactic medium, to the self-regulation of the growth of the supermassive black hole and of the galactic bulge (e.g. Silk & Rees 1998; Di Matteo et al. 2005; Germain et al. 2009; Hopkins et al. 2009; Elvis 2006, and references therein)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84.
Abstract: CLOUDY is a large‐scale spectral synthesis code designed to simulate fully physical conditions within an astronomical plasma and then predict the emitted spectrum. Here we describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84. The computational methods and uncertainties are outlined together with the direction future development will take. The code is freely available and is widely used in the analysis and interpretation of emission‐line spectra. Web access to the Fortran source for CLOUDY, its documentation Hazy, and an independent electronic form of the atomic database is also described.

2,571 citations


"Quasar outflows and AGN feedback in..." refers background in this paper

  • ...01 of the spectral synthesis code Cloudy, last described in Ferland et al. (1998)....

    [...]

Journal ArticleDOI
TL;DR: In this article, an evolutionary model for starbursts, quasars, and spheroidal galaxies is presented, in which mergers between gas-rich galaxies drive nuclear inflows of gas, producing starburst and feeding the buried growth of supermassive black holes (BHs) until feedback expels gas and renders a briefly visible optical quasar.
Abstract: We present an evolutionary model for starbursts, quasars, and spheroidal galaxies in which mergers between gas-rich galaxies drive nuclear inflows of gas, producing starbursts and feeding the buried growth of supermassive black holes (BHs) until feedback expels gas and renders a briefly visible optical quasar. The quasar lifetime and obscuring column density depend on both the instantaneous and peak quasar luminosity, and we determine this dependence using a large set of galaxy merger simulations varying galaxy properties, orbital geometry, and gas physics. We use these fits to deconvolve observed quasar luminosity functions and obtain the evolution of the formation rate of quasars with peak luminosity, (Lpeak, z). Quasars spend extended periods at luminosities well below peak, so (Lpeak) has a maximum corresponding to the break in the observed luminosity function. From (Lpeak) and our simulations, we obtain self-consistent hard and soft X-ray and optical luminosity functions and predict many observables at multiple redshifts, including column density distributions of optical and X-ray samples, the luminosity function of broad-line quasars in X-ray samples and broad-line fraction versus luminosity, active BH mass functions, the distribution of Eddington ratios, the mass function of relic BHs and total BH mass density, and the cosmic X-ray background. In every case, our predictions agree well with observed estimates, without invoking ad hoc assumptions about source properties or distributions. We provide a library of Monte Carlo realizations of our models for comparison with observations.

1,970 citations


"Quasar outflows and AGN feedback in..." refers background in this paper

  • ...The energy, mass, and momentum carried by these outflows are thought to play an important role in shaping the early universe and dictating its evolution (e.g. Scannapieco & Oh 2004; Levine & Gnedin 2005; Hopkins et al. 2006; Cattaneo et al. 2009; Ciotti et al. 2009, 2010; Ostriker et al. 2010)....

    [...]