scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rabies Virus-Inspired Silica-Coated Gold Nanorods as a Photothermal Therapeutic Platform for Treating Brain Tumors.

TL;DR: Rabies virus-inspired silica-coated gold nanorods are fabricated by mimicking size, shape, surface glycoprotein property and in vivo behavior of the rabies virus to respond to near-infrared laser irradiation, emit heat, and effectively suppress brain tumors.
Abstract: Rabies virus-inspired silica-coated gold nanorods are fabricated by mimicking size, shape, surface glycoprotein property and in vivo behavior of the rabies virus. These nanorods not only resemble the appearance of the actual rabies virus but also travel into the brain through the neuronal pathway bypassing the blood-brain barrier, and moreover respond to near-infrared laser (808 nm) irradiation, emit heat, and effectively suppress brain tumors.
Citations
More filters
01 Oct 2011
TL;DR: In this article, the tumor microenvironment limits the uniform penetration of nanotherapeutics by slowing or halting their transport through hydrodynamic and steric hindrance, which is an outstanding challenge for nanomedicine.
Abstract: Nanomedicine has offered new hope for cancer treatment.[1] Nanotherapeutics exhibit many advantages over small-molecule chemotherapeutics, including diminished systemic toxicity and improved circulation times. Unfortunately, non-uniformly leaky vasculature[2] and a dense interstitial structure[3] hinder their effective delivery to tumors.[4] These physiological abnormalities make transvascular transport—movement from vessels to the interstitium—and interstitial transport—movement through the interstitium to target cells—heterogeneous.[4a] Hence the tumor microenvironment limits the uniform penetration of nanotherapeutics by slowing or halting their transport through hydrodynamic and steric hindrance.[2a,3a,5] Overcoming these physiological barriers in tumors is an outstanding challenge for nanomedicine.

372 citations

Journal ArticleDOI
02 Apr 2020-Cell
TL;DR: Key advances and emerging concepts for tissue-specific drug delivery approaches and their clinical translation are discussed.

333 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the latest remarkable advances in BBB-crossing nanotechnology, with an emphasis on the judicious design of multifunctional nanoplatforms for effective BBB penetration, efficient tumour accumulation, precise tumour imaging, and significant tumour inhibition of brain cancer.
Abstract: Brain cancer, especially the most common type of glioblastoma, is highly invasive and known as one of the most devastating and deadly neoplasms. Despite surgical and medical advances, the prognosis for most brain cancer patients remains dismal and the median survival rarely exceeds 16 months. Drug delivery to the brain is significantly hindered by the existence of the blood–brain barrier (BBB), which serves as a protective semi-permeable membrane for the central nervous system. Recent breakthroughs in nanotechnology have yielded multifunctional theranostic nanoplatforms with the ability to cross or bypass the BBB, enabling accurate diagnosis and effective treatment of brain tumours. Herein, we make our efforts to present a comprehensive review on the latest remarkable advances in BBB-crossing nanotechnology, with an emphasis on the judicious design of multifunctional nanoplatforms for effective BBB penetration, efficient tumour accumulation, precise tumour imaging, and significant tumour inhibition of brain cancer. The detailed elucidation of BBB-crossing nanotechnology in this review is anticipated to attract broad interest from researchers in diverse fields to participate in the establishment of powerful BBB-crossing nanoplatforms for highly efficient brain cancer theranostics.

322 citations

Journal ArticleDOI
TL;DR: The design, properties, and biomedical applications of organic/inorganic nanohybrids fabricated from inorganic nanoparticles and polymers, including properties from organic and inorganic parts, synergistic properties, morphology-dependent Properties, and self-assembly of nanohYbrids are reviewed.
Abstract: Organic/inorganic nanohybrids have attracted widespread interests due to their favorable properties and promising applications in biomedical areas. Great efforts have been made to design and fabricate versatile nanohybrids. Among different organic components, diverse polymers offer unique avenues for multifunctional systems with collective properties. This review focuses on the design, properties, and biomedical applications of organic/inorganic nanohybrids fabricated from inorganic nanoparticles and polymers. We begin with a brief introduction to a variety of strategies for the fabrication of functional organic/inorganic nanohybrids. Then the properties and functions of nanohybrids are discussed, including properties from organic and inorganic parts, synergistic properties, morphology-dependent properties, and self-assembly of nanohybrids. After that, current situations of nanohybrids applied for imaging, therapy, and imaging-guided therapy are demonstrated. Finally, we discuss the prospect of organic/in...

264 citations

Journal ArticleDOI
TL;DR: NIR‐II conjugated polymer nanoparticles are promising for precise imaging and treatment of brain tumors and assist clear pinpointing of glioma at a depth of almost 3 mm through scalp and skull.
Abstract: Brain tumor is one of the most lethal cancers owing to the existence of blood-brain barrier and blood-brain tumor barrier as well as the lack of highly effective brain tumor treatment paradigms. Herein, cyclo(Arg-Gly-Asp-D-Phe-Lys(mpa)) decorated biocompatible and photostable conjugated polymer nanoparticles with strong absorption in the second near-infrared (NIR-II) window are developed for precise photoacoustic imaging and spatiotemporal photothermal therapy of brain tumor through scalp and skull. Evidenced by the higher efficiency to penetrate scalp and skull for 1064 nm laser as compared to common 808 nm laser, NIR-II brain-tumor photothermal therapy is highly effective. In addition, via a real-time photoacoustic imaging system, the nanoparticles assist clear pinpointing of glioma at a depth of almost 3 mm through scalp and skull with an ultrahigh signal-to-background ratio of 90. After spatiotemporal photothermal treatment, the tumor progression is effectively inhibited and the survival spans of mice are significantly extended. This study demonstrates that NIR-II conjugated polymer nanoparticles are promising for precise imaging and treatment of brain tumors.

262 citations

References
More filters
Journal ArticleDOI
TL;DR: By successively addressing each of the biological barriers that a particle encounters upon intravenous administration, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
Abstract: Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.

4,457 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.
Abstract: Engineered nanoparticles have the potential to revolutionize the diagnosis and treatment of many diseases; for example, by allowing the targeted delivery of a drug to particular subsets of cells. However, so far, such nanoparticles have not proved capable of surmounting all of the biological barriers required to achieve this goal. Nevertheless, advances in nanoparticle engineering, as well as advances in understanding the importance of nanoparticle characteristics such as size, shape and surface properties for biological interactions, are creating new opportunities for the development of nanoparticles for therapeutic applications. This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.

3,239 citations

Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations

Journal ArticleDOI
TL;DR: Gold nanoparticles provide non-toxic carriers for drug and gene delivery applications and their interaction with thiols is an effective and selective means of controlled intracellular release.

2,383 citations

Journal ArticleDOI
TL;DR: Highly stable, polymer micelle assemblies known as filomicelles are used to compare the transport and trafficking of flexible filaments with spheres of similar chemistry and show that long-circulating vehicles need not be nanospheres.
Abstract: Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles persisted in the circulation up to one week after intravenous injection. This is about ten times longer than their spherical counterparts and is more persistent than any known synthetic nanoparticle. Under fluid flow conditions, spheres and short filomicelles are taken up by cells more readily than longer filaments because the latter are extended by the flow. Preliminary results further demonstrate that filomicelles can effectively deliver the anticancer drug paclitaxel and shrink human-derived tumours in mice. Although these findings show that long-circulating vehicles need not be nanospheres, they also lend insight into possible shape effects of natural filamentous viruses.

2,332 citations