scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Radial Acceleration Relation in Rotationally Supported Galaxies.

19 Sep 2016-Physical Review Letters (American Physical Society)-Vol. 117, Iss: 20, pp 201101
TL;DR: A correlation between the radial acceleration traced by rotation curves and that predicted by the observed distribution of baryons is reported, tantamount to a natural law for rotating galaxies.
Abstract: We report a correlation between the radial acceleration traced by rotation curves and that predicted by the observed distribution of baryons. The same relation is followed by 2693 points in 153 galaxies with very different morphologies, masses, sizes, and gas fractions. The correlation persists even when dark matter dominates. Consequently, the dark matter contribution is fully specified by that of the baryons. The observed scatter is small and largely dominated by observational uncertainties. This radial acceleration relation is tantamount to a natural law for rotating galaxies.
Citations
More filters
Journal ArticleDOI
TL;DR: For example, the observed cores of many dark-matter dominated galaxies are both less dense and less cuspy than naively predicted in the Lambda$CDM as discussed by the authors, and the number of small galaxies and dwarf satellites in the Local Group is far below the predicted count of low-mass dark matter halos and subhalos within similar volumes.
Abstract: The dark energy plus cold dark matter ($\Lambda$CDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of Universe and its evolution with time. Yet on length scales smaller than $\sim 1$ Mpc and mass scales smaller than $\sim 10^{11} M_{\odot}$, the theory faces a number of challenges. For example, the observed cores of many dark-matter dominated galaxies are both less dense and less cuspy than naively predicted in $\Lambda$CDM. The number of small galaxies and dwarf satellites in the Local Group is also far below the predicted count of low-mass dark matter halos and subhalos within similar volumes. These issues underlie the most well-documented problems with $\Lambda$CDM: Cusp/Core, Missing Satellites, and Too-Big-to-Fail. The key question is whether a better understanding of baryon physics, dark matter physics, or both will be required to meet these challenges. Other anomalies, including the observed planar and orbital configurations of Local Group satellites and the tight baryonic/dark matter scaling relations obeyed by the galaxy population, have been less thoroughly explored in the context of $\Lambda$CDM theory. Future surveys to discover faint, distant dwarf galaxies and to precisely measure their masses and density structure hold promising avenues for testing possible solutions to the small-scale challenges going forward. Observational programs to constrain or discover and characterize the number of truly dark low-mass halos are among the most important, and achievable, goals in this field over then next decade. These efforts will either further verify the $\Lambda$CDM paradigm or demand a substantial revision in our understanding of the nature of dark matter.

991 citations

Journal ArticleDOI
TL;DR: The dark energy plus cold dark matter (ΛCDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of the Universe and its evolution with time as mentioned in this paper.
Abstract: The dark energy plus cold dark matter (ΛCDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of the Universe and its evolution with time. Yet on length scales smaller than ∼1 Mpc and mass scales smaller than ∼1011M⊙, the theory faces a number of challenges. For example, the observed cores of many dark matter–dominated galaxies are both less dense and less cuspy than naively predicted in ΛCDM. The number of small galaxies and dwarf satellites in the Local Group is also far below the predicted count of low-mass dark matter halos and subhalos within similar volumes. These issues underlie the most well-documented problems with ΛCDM: cusp/core, missing satellites, and too-big-to-fail. The key question is whether a better understanding of baryon physics, dark matter physics, or both is required to meet these challenges. Other anomalies, including the observed planar and orbital configurations of Local Group satellites and the tight baryonic...

675 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the radial acceleration relation between baryons and dark matter in 240 galaxies with spatially resolved kinematic data and found that the relationship coincides with the 1:1 line (no dark matter) at high accelerations but systematically deviates from unity below a critical scale of ~10^-10 m/s^2.
Abstract: We study the link between baryons and dark matter in 240 galaxies with spatially resolved kinematic data. Our sample spans 9 dex in stellar mass and includes all morphological types. We consider (i) 153 late-type galaxies (LTGs; spirals and irregulars) with gas rotation curves from the SPARC database; (ii) 25 early-type galaxies (ETGs; ellipticals and lenticulars) with stellar and HI data from ATLAS^3D or X-ray data from Chandra; and (iii) 62 dwarf spheroidals (dSphs) with individual-star spectroscopy. We find that LTGs, ETGs, and "classical" dSphs follow the same radial acceleration relation: the observed acceleration (gobs) correlates with that expected from the distribution of baryons (gbar) over 4 dex. The relation coincides with the 1:1 line (no dark matter) at high accelerations but systematically deviates from unity below a critical scale of ~10^-10 m/s^2. The observed scatter is remarkably small (<0.13 dex) and largely driven by observational uncertainties. The residuals do not correlate with any global or local galaxy property (baryonic mass, gas fraction, radius, etc.). The radial acceleration relation is tantamount to a Natural Law: when the baryonic contribution is measured, the rotation curve follows, and vice versa. Including ultrafaint dSphs, the relation may extend by another 2 dex and possibly flatten at gbar<10^-12 m/s^2, but these data are significantly more uncertain. The radial acceleration relation subsumes and generalizes several well-known dynamical properties of galaxies, like the Tully-Fisher and Faber-Jackson relations, the "baryon-halo" conspiracies, and Renzo's rule.

357 citations


Cites background from "Radial Acceleration Relation in Rot..."

  • ...In McGaugh et al. (2016), we provide a concise summary of our results from 153 SPARC galaxies....

    [...]

  • ...3.2 and McGaugh et al. 2016)....

    [...]

Journal ArticleDOI
16 May 2017
TL;DR: In this article, it was shown that the entropy of the de Sitter states does not thermalise at sub-Hubble scales: they exhibit memory effects in the form of an entropy displacement caused by matter, and the emergent laws of gravity contain an additional 'dark' gravitational force describing the "elastic response due to the entropy displacement".
Abstract: Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit memory effects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain an additional 'dark' gravitational force describing the 'elastic' response due to the entropy displacement. We derive an estimate of the strength of this extra force in terms of the baryonic mass, Newton's constant and the Hubble acceleration scale a0 = cH0, and provide evidence for the fact that this additional `dark gravity~force' explains the observed phenomena in galaxies and clusters currently attributed to dark matter.

350 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the entropy of the de Sitter states does not thermalise at sub-Hubble scales: they exhibit memory effects in the form of an entropy displacement caused by matter.
Abstract: Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit memory effects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain an additional `dark' gravitational force describing the `elastic' response due to the entropy displacement. We derive an estimate of the strength of this extra force in terms of the baryonic mass, Newton's constant and the Hubble acceleration scale a_0 =cH_0, and provide evidence for the fact that this additional `dark gravity~force' explains the observed phenomena in galaxies and clusters currently attributed to dark matter.

330 citations


Cites methods from "Radial Acceleration Relation in Rot..."

  • ...This is known as the baryonic Tully-Fisher relation and has been well tested by observations [36,37] of a very large number of spiral galaxies....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes, and they found that all such profiles have the same shape, independent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological parameters.
Abstract: We use high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes. We find that all such profiles have the same shape, independent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological parameters. Spherically averaged equilibrium profiles are well fitted over two decades in radius by a simple formula originally proposed to describe the structure of galaxy clusters in a cold dark matter universe. In any particular cosmology, the two scale parameters of the fit, the halo mass and its characteristic density, are strongly correlated. Low-mass halos are significantly denser than more massive systems, a correlation that reflects the higher collapse redshift of small halos. The characteristic density of an equilibrium halo is proportional to the density of the universe at the time it was assembled. A suitable definition of this assembly time allows the same proportionality constant to be used for all the cosmologies that we have tested. We compare our results with previous work on halo density profiles and show that there is good agreement. We also provide a step-by-step analytic procedure, based on the Press-Schechter formalism, that allows accurate equilibrium profiles to be calculated as a function of mass in any hierarchical model.

9,729 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a suite of simplified spectrophotometric spiral galaxy evolution models to argue that there are substantial variations in stellar mass-to-light (M/L) ratios within and among galaxies, amounting to factors of between 3 and 7 in the optical and 2 in the near-infrared.
Abstract: We have used a suite of simplified spectrophotometric spiral galaxy evolution models to argue that there are substantial variations in stellar mass-to-light (M/L) ratios within and among galaxies, amounting to factors of between 3 and 7 in the optical and factors of 2 in the near-infrared. Our models show a strong correlation between stellar M/L and the optical colors of the integrated stellar populations. Under the assumption of a universal spiral galaxy initial mass function (IMF), relative trends in model stellar M/L with color are robust to uncertainties in stellar population and galaxy evolution modeling, including the effects of modest bursts of star formation. Errors in the dust-reddening estimates do not strongly affect the final derived stellar masses of a stellar population. We examine the observed maximum disk stellar M/L ratios of a sample of spiral galaxies with accurate rotation curves and optical and near-infrared luminosity profiles. From these observed maximum disk M/L ratios we conclude that a Salpeter IMF has too many low-mass stars per unit luminosity but that an IMF similar to the Salpeter IMF at the high-mass end with less low-mass stars (giving stellar M/L ratios 30% lower than the Salpeter value) is consistent with the maximum disk constraints. Trends in observed maximum disk stellar M/L ratios with color provide a good match to the predicted model relation, suggesting that the spiral galaxy stellar IMF is universal and that a fraction of (particularly high surface brightness) spiral galaxies may be close to maximum disk. We apply the model trends in stellar M/L ratio with color to the Tully-Fisher (T-F) relation. We find that the stellar mass T-F relation is relatively steep, has modest scatter, and is independent of the passband and color used to derive the stellar masses, again lending support for a universal IMF. The difference in slope between the optical (especially blue) and near-infrared T-F relations is due to the combined effects of dust attenuation and stellar M/L variations with galaxy mass. Assuming the Hubble Space Telescope Key Project distance to the Ursa Major Cluster and neglecting the (uncertain) molecular gas fraction, we find that the baryonic T-F relation takes the form Mbaryon V3.5 (with random and systematic 1 σ slope errors of ~0.2 each) when using a bisector fit and rotation velocities derived from the flat part of the rotation curve. Since we have normalized the stellar M/L ratios to be as high as can possibly be allowed by maximum disk constraints, the slope of the baryonic T-F relation will be somewhat shallower than 3.5 if all disks are substantially submaximal.

1,948 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 Vc 300 km s-1.
Abstract: We explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 Vc 300 km s-1. We find a clear break in the optical Tully-Fisher relation: field galaxies with Vc 90 km s-1 fall below the relation defined by brighter galaxies. These faint galaxies, however, are very rich in gas; adding in the gas mass and plotting the baryonic disk mass Md = M* + Mgas in place of luminosity restores the single linear relation. The Tully-Fisher relation thus appears fundamentally to be a relation between rotation velocity and total baryonic mass of the form Md ∝ V.

737 citations

Journal ArticleDOI
de Blok1
TL;DR: In this paper, an overview of the attempts to determine the distribution of dark matter in low surface brightness disk and gas-rich dwarf galaxies, both through observations and computer simulations, is given.
Abstract: This paper gives an overview of the attempts to determine the distribution of dark matter in low surface brightness disk and gas-rich dwarf galaxies, both through observations and computer simulations. Observations seem to indicate an approximately constant dark matter density in the inner parts of galaxies, while cosmological computer simulations indicate a steep power-law-like behaviour. This difference has become known as the “core/cusp problem,” and it remains one of the unsolved problems in small-scale cosmology.

723 citations