scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Radio interferometric geolocation

TL;DR: A novel radio interference based sensor localization method for wireless sensor networks that does not require any sensors other than the radio used for wireless communication and has an average localization error as small as 3 cm and a range of up to 160 meters.
Abstract: We present a novel radio interference based sensor localization method for wireless sensor networks. The technique relies on a pair of nodes emitting radio waves simultaneously at slightly different frequencies. The carrier frequency of the composite signal is between the two frequencies, but has a very low frequency envelope. Neighboring nodes can measure the energy of the envelope signal as the signal strength. The relative phase offset of this signal measured at two receivers is a function of the distances between the four nodes involved and the carrier frequency. By making multiple measurements in an at least 8-node network, it is possible to reconstruct the relative location of the nodes in 3D. Our prototype implementation on the MICA2 platform yields an average localization error as small as 3 cm and a range of up to 160 meters. In addition to this high precision and long range, the other main advantage of the Radio Interferometric Positioning System (RIPS) is the fact that it does not require any sensors other than the radio used for wireless communication.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This survey presents a comprehensive review of the recent literature since the publication of a survey on sensor networks, and gives an overview of several new applications and then reviews the literature on various aspects of WSNs.

5,626 citations


Cites methods from "Radio interferometric geolocation"

  • ...RIPS: The work in [57] proposes a localization system called Radio Interferometric Positioning System (RIPS) which utilizes two radio transmitters to create an interference signal....

    [...]

Proceedings ArticleDOI
Chunyi Peng1, Guobin Shen1, Yongguang Zhang1, Yanlin Li1, Kun Tan1 
06 Nov 2007
TL;DR: The design, implementation, and evaluation of BeepBeep is presented, a high-accuracy acoustic-based ranging system that operates in a spontaneous, ad-hoc, and device-to-device context without leveraging any pre-planned infrastructure.
Abstract: We present the design, implementation, and evaluation of BeepBeep, a high-accuracy acoustic-based ranging system. It operates in a spontaneous, ad-hoc, and device-to-device context without leveraging any pre-planned infrastructure. It is a pure software-based solution and uses only the most basic set of commodity hardware -- a speaker, a microphone, and some form of device-to-device communication -- so that it is readily applicable to many low-cost sensor platforms and to most commercial-off-the-shelf mobile devices like cell phones and PDAs. It achieves high accuracy through a combination of three techniques: two-way sensing, self-recording, and sample counting. The basic idea is the following. To estimate the range between two devices, each will emit a specially-designed sound signal ("Beep") and collect a simultaneous recording from its microphone. Each recording should contain two such beeps, one from its own speaker and the other from its peer. By counting the number of samples between these two beeps and exchanging the time duration information with its peer, each device can derive the two-way time of flight of the beeps at the granularity of sound sampling rate. This technique cleverly avoids many sources of inaccuracy found in other typical time-of-arrival schemes, such as clock synchronization, non-real-time handling, software delays, etc. Our experiments on two common cell phone models have shown that we can achieve around one or two centimeters accuracy within a range of more than ten meters, despite a series of technical challenges in implementing the idea.

519 citations


Cites methods from "Radio interferometric geolocation"

  • ...1 TOA-based Systems Most existing high accuracy ranging schemes and lateration-based localization systems rely on time-of-arrival (TOA) of acoustic signal, with the few exceptions being the RIPS system [9] that is based on radio interferometric yet still achieves high precision up to several centimeters using only radio signal....

    [...]

Journal ArticleDOI
TL;DR: Questions that can be addressed using bioacoustic approaches are reviewed, by providing a primer on technologies and approaches used to study animals at multiple organizational levels by ecologists, behaviourists and conservation biologists.
Abstract: Summary 1. Animals produce sounds for diverse biological functions such as defending territories, attracting mates, deterring predators, navigation, finding food and maintaining contact with members of their social group. Biologists can take advantage of these acoustic behaviours to gain valuable insights into the spatial and temporal scales over which individuals and populations interact. Advances in bioacoustic technology, including the development of autonomous cabled and wireless recording arrays, permit data collection at multiple locations over time. These systems are transforming the way we study individuals and populations of animals and are leading to significant advances in our understandings of the complex interactions between animals and their habitats. 2. Here, we review questions that can be addressed using bioacoustic approaches, by providing a primer on technologies and approaches used to study animals at multiple organizational levels by ecologists, behaviourists and conservation biologists. 3. Spatially dispersed groups of microphones (arrays) enable users to study signal directionality on a small scale or to locate animals and track their movements on a larger scale. 4. Advances in algorithm development can allow users to discriminate among species, sexes, age groups and individuals. 5. With such technology, users can remotely and non-invasively survey populations, describe the soundscape, quantify anthropogenic noise, study species interactions, gain new insights into the social dynamics of sound-producing animals and track the effects of factors such as climate change and habitat fragmentation on phenology and biodiversity. 6. There remain many challenges in the use of acoustic monitoring, including the difficulties in performing signal recognition across taxa. The bioacoustics community should focus on developing a

478 citations


Cites background from "Radio interferometric geolocation"

  • ...For cases where only relative location is needed, othermethods are available, including radio interferometry, whichmeasures the difference in phase of signals received by each detector at varying distances from the source signal location (Maroti et al. 2005)....

    [...]

Journal ArticleDOI
TL;DR: This paper reviews different approaches of node localization discovery in wireless sensor networks and the overview of the schemes proposed by different scholars for the improvement of localization in wireless Sensor networks is presented.
Abstract: Recent advances in radio and embedded systems have enabled the proliferation of wireless sensor networks. Wireless sensor networks are tremendously being used in different environments to perform various monitoring tasks such as search, rescue, disaster relief, target tracking and a number of tasks in smart environments. In many such tasks, node localization is inherently one of the system parameters. Node localization is required to report the origin of events, assist group querying of sensors, routing and to answer questions on the network coverage. So, one of the fundamental challenges in wireless sensor network is node localization. This paper reviews different approaches of node localization discovery in wireless sensor networks. The overview of the schemes proposed by different scholars for the improvement of localization in wireless sensor networks is also presented. Future research directions and challenges for improving node localization in wireless sensor networks are also discussed.

357 citations


Cites background or methods from "Radio interferometric geolocation"

  • ...But localization using interferometric ranging requires a considerably larger set of measurements which limits their solutions to smaller networks (16 nodes in [18] and 25 nodes in [19])....

    [...]

  • ...On the other hand interferometric ranging based localization has been proposed in [18], [19], [20] which have not been discussed by any existing literature....

    [...]

  • ...Compared to [18] and [19], which treat localization as a global optimization problem, the iterative algorithm is a distributed algorithm that is simple to implement in larger networks....

    [...]

  • ...To optimize the solution globally [18] uses genetic algorithm approach whereas [19] reduces the search space with additional RSSI readings....

    [...]

  • ...Interferometric Ranging Based Localization The idea behind the Radio Interferometric Positioning System (RIPS) proposed in [18], [19], [20] is to utilize two transmitters to create the interference signal directly....

    [...]

Book ChapterDOI
30 Sep 2009
TL;DR: This paper provides taxonomies for mobile wireless sensors and localization, including common architectures, measurement techniques, and localization algorithms, and concludes with a description of real-world mobile sensor applications that require position estimation.
Abstract: Over the past decade we have witnessed the evolution of wireless sensor networks, with advancements in hardware design, communication protocols, resource efficiency, and other aspects. Recently, there has been much focus on mobile sensor networks, and we have even seen the development of small-profile sensing devices that are able to control their own movement. Although it has been shown that mobility alleviates several issues relating to sensor network coverage and connectivity, many challenges remain. Among these, the need for position estimation is perhaps the most important. Not only is localization required to understand sensor data in a spatial context, but also for navigation, a key feature of mobile sensors. In this paper, we present a survey on localization methods for mobile wireless sensor networks. We provide taxonomies for mobile wireless sensors and localization, including common architectures, measurement techniques, and localization algorithms. We conclude with a description of real-world mobile sensor applications that require position estimation.

350 citations


Cites methods from "Radio interferometric geolocation"

  • ...This technique is used in several localization schemes, including [31], [32], [9], and [6]....

    [...]

  • ...Instead, methods such as radio interferometry [31] must be used to generate a low frequency beat signal, as shown in Figure 4....

    [...]

References
More filters
Proceedings ArticleDOI
01 Aug 2000
TL;DR: The randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy are described.
Abstract: This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, location-dependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze information from beacons spread throughout the building. Cricket is the result of several design goals, including user privacy, decentralized administration, network heterogeneity, and low cost. Rather than explicitly tracking user location, Cricket helps devices learn where they are and lets them decide whom to advertise this information to; it does not rely on any centralized management or control and there is no explicit coordination between beacons; it provides information to devices regardless of their type of network connectivity; and each Cricket device is made from off-the-shelf components and costs less than U.S. $10. We describe the randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy. Our experience with Cricket shows that several location-dependent applications such as in-building active maps and device control can be developed with little effort or manual configuration.

4,123 citations


"Radio interferometric geolocation" refers background in this paper

  • ...The relative phase o.set of this signal measured at two re­ceivers is a function of the distances between the four nodes involved and the carrier frequency....

    [...]

Journal ArticleDOI
12 Nov 2000
TL;DR: Key requirements are identified, a small device is developed that is representative of the class, a tiny event-driven operating system is designed, and it is shown that it provides support for efficient modularity and concurrency-intensive operation.
Abstract: Technological progress in integrated, low-power, CMOS communication devices and sensors makes a rich design space of networked sensors viable. They can be deeply embedded in the physical world and spread throughout our environment like smart dust. The missing elements are an overall system architecture and a methodology for systematic advance. To this end, we identify key requirements, develop a small device that is representative of the class, design a tiny event-driven operating system, and show that it provides support for efficient modularity and concurrency-intensive operation. Our operating system fits in 178 bytes of memory, propagates events in the time it takes to copy 1.25 bytes of memory, context switches in the time it takes to copy 6 bytes of memory and supports two level scheduling. The analysis lays a groundwork for future architectural advances.

3,648 citations

Proceedings ArticleDOI
03 Nov 2004
TL;DR: The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update and comprehensive error compensation including clock skew estimation, which is markedly better than that of the existing RBS and TPSN algorithms.
Abstract: Wireless sensor network applications, similarly to other distributed systems, often require a scalable time synchronization service enabling data consistency and coordination. This paper describes the Flooding Time Synchronization Protocol (FTSP), especially tailored for applications requiring stringent precision on resource limited wireless platforms. The proposed time synchronization protocol uses low communication bandwidth and it is robust against node and link failures. The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update. The unique high precision performance is reached by utilizing MAC-layer time-stamping and comprehensive error compensation including clock skew estimation. The sources of delays and uncertainties in message transmission are analyzed in detail and techniques are presented to mitigate their effects. The FTSP was implemented on the Berkeley Mica2 platform and evaluated in a 60-node, multi-hop setup. The average per-hop synchronization error was in the one microsecond range, which is markedly better than that of the existing RBS and TPSN algorithms.

2,267 citations

Proceedings ArticleDOI
01 Dec 2001
TL;DR: This work is proposing APS - a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate location for all nodes in a network where only a limited fraction of nodes have self location capability.
Abstract: Many ad hoc network protocols and applications assume the knowledge of geographic location of nodes. The absolute location of each networked node is an assumed fact by most sensor networks which can then present the sensed information on a geographical map. Finding location without the aid of GPS in each node of an ad hoc network is important in cases where GPS is either not accessible, or not practical to use due to power, form factor or line of sight conditions. Location would also enable routing in sufficiently isotropic large networks, without the use of large routing tables. We are proposing APS - a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate location for all nodes in a network where only a limited fraction of nodes have self location capability.

1,887 citations

Journal ArticleDOI
TL;DR: Estimation of the parameters of a single-frequency complex tone from a finite number of noisy discrete-time observations is discussed and appropriate Cramer-Rao bounds and maximum-likelihood estimation algorithms are derived.
Abstract: Estimation of the parameters of a single-frequency complex tone from a finite number of noisy discrete-time observations is discussed. The appropriate Cramer-Rao bounds and maximum-likelihood (MI.) estimation algorithms are derived. Some properties of the ML estimators are proved. The relationship of ML estimation to the discrete Fourier transform is exploited to obtain practical algorithms. The threshold effect of one algorithm is analyzed and compared to simulation results. Other simulation results verify other aspects of the analysis.

1,878 citations