scispace - formally typeset
Open accessJournal ArticleDOI: 10.1109/TITS.2021.3061165

RaLL: End-to-End Radar Localization on Lidar Map Using Differentiable Measurement Model

Abstract: Compared to the onboard camera and laser scanner, radar sensor provides lighting and weather invariant sensing, which is naturally suitable for long-term localization under adverse conditions. However, radar data is sparse and noisy, resulting in challenges for radar mapping. On the other hand, the most popular available map currently is built by lidar. In this paper, we propose an end-to-end deep learning framework for Radar Localization on Lidar Map (RaLL) to bridge the gap, which not only achieves the robust radar localization but also exploits the mature lidar mapping technique, thus reducing the cost of radar mapping. We first embed both sensor modals into a common feature space by a neural network. Then multiple offsets are added to the map modal for exhaustive similarity evaluation against the current radar modal, yielding the regression of the current pose. Finally, we apply this differentiable measurement model to a Kalman Filter (KF) to learn the whole sequential localization process in an end-to-end manner. The whole learning system is differentiable with the network based measurement model at the front-end and KF at the back-end. To validate the feasibility and effectiveness, we employ multi-session multi-scene datasets collected from the real world, and the results demonstrate that our proposed system achieves superior performance over 90km driving, even in generalization scenarios where the model training is in UK, while testing in South Korea. We also release the source code publicly.

... read more

Topics: Radar engineering details (64%), Radar (63%), Lidar (54%) ... read more
Citations
  More

6 results found


Open accessJournal ArticleDOI: 10.1136/BMJ.323.7325.1375/A
08 Dec 2001-BMJ
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

... read more

30,199 Citations


Open accessJournal ArticleDOI: 10.3389/FROBT.2021.661199
Huan Yin1, Xuecheng Xu1, Yue Wang1, Rong Xiong1Institutions (1)
17 May 2021-
Abstract: Place recognition is critical for both offline mapping and online localization. However, current single-sensor based place recognition still remains challenging in adverse conditions. In this paper, a heterogeneous measurement based framework is proposed for long-term place recognition, which retrieves the query radar scans from the existing lidar (Light Detection and Ranging) maps. To achieve this, a deep neural network is built with joint training in the learning stage, and then in the testing stage, shared embeddings of radar and lidar are extracted for heterogeneous place recognition. To validate the effectiveness of the proposed method, we conducted tests and generalization experiments on the multi-session public datasets and compared them to other competitive methods. The experimental results indicate that our model is able to perform multiple place recognitions: lidar-to-lidar (L2L), radar-to-radar (R2R), and radar-to-lidar (R2L), while the learned model is trained only once. We also release the source code publicly: https://github.com/ZJUYH/radar-to-lidar-place-recognition.

... read more

Topics: Radar (52%), Artificial neural network (51%)

2 Citations


Open accessJournal ArticleDOI: 10.3389/FROBT.2021.661199
Huan Yin1, Xuecheng Xu1, Yue Wang1, Rong Xiong1Institutions (1)
Abstract: Place recognition is critical for both offline mapping and online localization. However, current single-sensor based place recognition still remains challenging in adverse conditions. In this paper, a heterogeneous measurements based framework is proposed for long-term place recognition, which retrieves the query radar scans from the existing lidar maps. To achieve this, a deep neural network is built with joint training in the learning stage, and then in the testing stage, shared embeddings of radar and lidar are extracted for heterogeneous place recognition. To validate the effectiveness of the proposed method, we conduct tests and generalization experiments on the multi-session public datasets compared to other competitive methods. The experimental results indicate that our model is able to perform multiple place recognitions: lidar-to-lidar, radar-to-radar and radar-to-lidar, while the learned model is trained only once. We also release the source code publicly: this https URL.

... read more

Topics: Radar (52%), Artificial neural network (51%)

Open accessPosted Content
18 Jun 2021-arXiv: Robotics
Abstract: We present a heterogeneous localization framework for solving radar global localization and pose tracking on pre-built lidar maps. To bridge the gap of sensing modalities, deep neural networks are constructed to create shared embedding space for radar scans and lidar maps. Herein learned feature embeddings are supportive for similarity measurement, thus improving map retrieval and data matching respectively. In RobotCar and MulRan datasets, we demonstrate the effectiveness of the proposed framework with the comparison to Scan Context and RaLL. In addition, the proposed pose tracking pipeline is with less neural networks compared to the original RaLL.

... read more

Topics: Radar (54%), Lidar (52%)

Open accessPosted Content
Zexi Chen, Haozhe Du, Yiyi Liao, Yue Wang1  +1 moreInstitutions (1)
25 Sep 2021-arXiv: Robotics
Abstract: Monocular visual-inertial odometry (VIO) is a critical problem in robotics and autonomous driving. Traditional methods solve this problem based on filtering or optimization. While being fully interpretable, they rely on manual interference and empirical parameter tuning. On the other hand, learning-based approaches allow for end-to-end training but require a large number of training data to learn millions of parameters. However, the non-interpretable and heavy models hinder the generalization ability. In this paper, we propose a fully differentiable, interpretable, and lightweight monocular VIO model that contains only 4 trainable parameters. Specifically, we first adopt Unscented Kalman Filter as a differentiable layer to predict the pitch and roll, where the covariance matrices of noise are learned to filter out the noise of the IMU raw data. Second, the refined pitch and roll are adopted to retrieve a gravity-aligned BEV image of each frame using differentiable camera projection. Finally, a differentiable pose estimator is utilized to estimate the remaining 4 DoF poses between the BEV frames. Our method allows for learning the covariance matrices end-to-end supervised by the pose estimation loss, demonstrating superior performance to empirical baselines. Experimental results on synthetic and real-world datasets demonstrate that our simple approach is competitive with state-of-the-art methods and generalizes well on unseen scenes.

... read more

Topics: Kalman filter (54%), Pose (54%), Differentiable function (53%) ... read more

References
  More

74 results found


Book ChapterDOI: 10.1017/CBO9781139207249.009
01 Jan 2012-

123,310 Citations


Open accessJournal ArticleDOI: 10.1136/BMJ.323.7325.1375/A
08 Dec 2001-BMJ
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

... read more

30,199 Citations


Open accessBook ChapterDOI: 10.1007/978-3-319-24574-4_28
05 Oct 2015-
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

... read more

Topics: Brain segmentation (57%), Deep learning (54%), Segmentation (50%)

28,273 Citations


Open accessPosted Content
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at this http URL .

... read more

Topics: Segmentation (50%)

19,534 Citations


Journal ArticleDOI: 10.1109/34.121791
Paul J. Besl1, H.D. McKay1Institutions (1)
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

... read more

Topics: Iterative closest point (63%), Point set registration (62%), Iterative method (55%) ... read more

15,673 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20215
20011