scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles

19 Jun 2006-Applied Physics Letters (American Institute of Physics)-Vol. 88, Iss: 25, pp 252502
TL;DR: In this paper, the influence of manganese, an effective dopant to obtain ZnO diluted magnetic semiconductors, on the lattice dynamics of ZnOs was investigated.
Abstract: Raman scattering has been used to study the influence of manganese, an effective dopant to obtain ZnO diluted magnetic semiconductors, on the lattice dynamics of ZnO. It is found that Mn doping increases the lattice defects and induces two Raman vibration modes of 275 and 526cm−1. On the other hand, high temperature (TC higher than 350K) ferromagnetism is observed in Zn1−xMnxO (x⩽0.02) nanoparticles. It is found that the ferromagnetism of Zn1−xMnxO nanoparticles is strongly related to defects in ZnO.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the fundamental properties of ZnO and of ZNO-based nanostructures, doping as well as present and future applications with emphasis on the electronic and optical properties including stimulated emission.
Abstract: Several hundred thousands of tons of ZnO are used by per year, e.g. as an additive to concrete or to rubber. In the field of optoelectronics, ZnO holds promises as a material for a blue/UV optoelectronics, alternatively to GaN, as a cheap, transparent, conducting oxide, as a material for electronic circuits, which are transparent in the visible or for semiconductor spintronics. The main problem is presently, however, a high, reproducible and stable p-doping. We review in this contribution partly critically the material growth, fundamental properties of ZnO and of ZnO-based nanostructures, doping as well as present and future applications, with emphasis on the electronic and optical properties including stimulated emission. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

872 citations

Journal ArticleDOI
TL;DR: This work critically review aspects of the material growth, fundamental properties of ZnO and ZNO-based nanostructures and doping as well as present and future applications with emphasis on the electronic and optical properties including stimulated emission.
Abstract: ZnO is presently experiencing a research boom with more than 2000 ZnO-related publications in 2005. This phenomenon is triggered, for example, by hope to use ZnO as a material for blue/UV optoelectronics as an alternative to GaN, as a cheap, transparent, conducting oxide, as a material for electronic circuits that are transparent in the visible or for semiconductor spintronics. Currently, however, the main problem is to achieve high, reproducible and stable p-doping. Herein, we critically review aspects of the material growth, fundamental properties of ZnO and ZnO-based nanostructures and doping as well as present and future applications with emphasis on the electronic and optical properties including stimulated emission.

796 citations

Journal ArticleDOI
TL;DR: In this article, a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions is presented.
Abstract: In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

186 citations

Journal ArticleDOI
TL;DR: In this paper, the occurrence of high temperature ferromagnetism in ZnO nanoparticles (NPs) doped with Co-atoms was studied at room temperature and above.
Abstract: We report on the occurrence of high temperature ferromagnetism (FM) in ZnO nanoparticles (NPs) doped with Co-atoms. ZnO NPs of two different initial sizes are doped with 3% and 5% Co using ball milling and FM is studied at room temperature and above. X-ray diffraction and high-resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from wurtzite-type ZnO. UV-visible absorption studies show change in band structure and photoluminescence studies show green emission band at 520 nm indicating incorporation of Co-atoms and presence of oxygen vacancy defects, respectively in ZnO lattice. Micro-Raman studies of doped samples shows defect related additional bands at 547 and 574 cm−1. XRD and Raman spectra provide clear evidence for strain in the doped ZnO NPs. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear FM with saturation magnetization (Ms) and coercive field (Hc) of the order of 3–7 emu/g a...

183 citations

Journal ArticleDOI
TL;DR: The effect of Fe-doping concentration on the physical behavior of ZnO thin films was analyzed and discussed in this article by using a simple chemical spray pyrolysis technique by varying the doping concentration in the range, 0-6.

169 citations

References
More filters
Journal ArticleDOI
11 Feb 2000-Science
TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract: Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.

7,062 citations

Journal ArticleDOI
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.

2,743 citations

Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8% is reported, indicating the existence of ferromagnetic long-range ordering.
Abstract: Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.

2,302 citations

Journal ArticleDOI
TL;DR: In this paper, the frequency and symmetry character of the fundamental modes of the Raman effect in zinc oxide has been determined using the continuous helium-neon and ionized argon lasers as sources.
Abstract: The Raman effect in zinc oxide has been measured using the continuous helium-neon and ionized argon lasers as sources. The frequency and symmetry character of the fundamental modes have been determined. The results are: two ${E}_{2}$ vibrations at 101 and 437 ${\mathrm{cm}}^{\ensuremath{-}1}$; one transverse ${A}_{1}$ at 381 ${\mathrm{cm}}^{\ensuremath{-}1}$ and one transverse ${E}_{1}$ at 407 ${\mathrm{cm}}^{\ensuremath{-}1}$; one longitudinal ${A}_{1}$ at 574 ${\mathrm{cm}}^{\ensuremath{-}1}$ and one longitudinal ${E}_{1}$ at 583 ${\mathrm{cm}}^{\ensuremath{-}1}$.

1,757 citations

Journal ArticleDOI
TL;DR: The first observations of ferromagnetism above room temperature for dilute (<4 at%) Mn-doped ZnO semiconductors are reported, promising new spintronic devices as well as magneto-optic components.
Abstract: The search for ferromagnetism above room temperature in dilute magnetic semiconductors has been intense in recent years. We report the first observations of ferromagnetism above room temperature for dilute ( 700 °C) methods were used, samples were found to exhibit clustering and were not ferromagnetic at room temperature. This capability to fabricate ferromagnetic Mn-doped ZnO semiconductors promises new spintronic devices as well as magneto-optic components.

1,652 citations