scispace - formally typeset
Open AccessJournal ArticleDOI

Raman spectroscopy as a versatile tool for studying the properties of graphene

Andrea C. Ferrari, +1 more
- 01 Apr 2013 - 
- Vol. 8, Iss: 4, pp 235-246
Reads0
Chats0
TLDR
The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract
Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent Advances in Ultrathin Two-Dimensional Nanomaterials

TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Isolation and characterization of few-layer black phosphorus

TL;DR: Castellanos-Gomez et al. as mentioned in this paper described the isolation and characterization of few-layer black phosphorus in the 2D Matererials, and showed that the few layer black phosphorus can be easily isolated and characterized.
Journal ArticleDOI

Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping

TL;DR: In this paper, the authors developed an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step, which is found to be very advantageous to freely suspend these materials as there are no capillary forces involved in the process.
Journal ArticleDOI

High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework

TL;DR: In this paper, the authors synthesize graphene analogous with high nitrogen content using a zeolitic imidazolate framework, which shows exceptional battery performances, but the nitrogen content is often quite low.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Interpretation of Raman spectra of disordered and amorphous carbon

TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Journal ArticleDOI

Superior Thermal Conductivity of Single-Layer Graphene

TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Related Papers (5)