scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Raman spectroscopy in graphene

TL;DR: In this article, the authors discuss the first-order and double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features and give special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal configuration.
About: This article is published in Physics Reports.The article was published on 2009-04-01. It has received 4945 citations till now. The article focuses on the topics: Bilayer graphene & Raman spectroscopy.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
22 Jul 2010-Nature
TL;DR: Cai et al. as discussed by the authors used a surface-assisted coupling of the precursors into linear polyphenylenes and their subsequent cyclodehydrogenation to produce GNRs of different topologies and widths.
Abstract: Graphene nanoribbons, narrow straight-edged strips of the single-atom-thick sheet form of carbon, are predicted to exhibit remarkable properties, making them suitable for future electronic applications. Before this potential can be realized, more chemically precise methods of production will be required. Cai et al. report a step towards that goal with the development of a bottom-up fabrication method that produces atomically precise graphene nanoribbons of different topologies and widths. The process involves the deposition of precursor monomers with structures that 'encode' the topology and width of the desired ribbon end-product onto a metal surface. Surface-assisted coupling of the precursors into linear polyphenylenes is then followed by cyclodehydrogenation. Given the method's versatility and precision, it could even provide a route to more unusual graphene nanoribbon structures with tuned chemical and electronic properties. Graphene nanoribbons (GNRs) have structure-dependent electronic properties that make them attractive for the fabrication of nanoscale electronic devices, but exploiting this potential has been hindered by the lack of precise production methods. Here the authors demonstrate how to reliably produce different GNRs, using precursor monomers that encode the structure of the targeted nanoribbon and are converted into GNRs by means of surface-assisted coupling. Graphene nanoribbons—narrow and straight-edged stripes of graphene, or single-layer graphite—are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices1,2,3. In particular, although the two-dimensional parent material graphene4,5 exhibits semimetallic behaviour, quantum confinement and edge effects2,6 should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical7,8,9, sonochemical10 and lithographic11,12 methods as well as through the unzipping of carbon nanotubes13,14,15,16, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling17,18 of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation19,20. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots21, superlattice structures22 and magnetic devices based on specific graphene nanoribbon edge states3.

2,905 citations

Journal ArticleDOI
TL;DR: Raman spectroscopy is shown to provide a powerful tool to differentiate between two different sp(2) carbon nanostructures (carbon nanotubes and graphene) which have many properties in common and others that differ.
Abstract: Raman spectroscopy is here shown to provide a powerful tool to differentiate between two different sp2 carbon nanostructures (carbon nanotubes and graphene) which have many properties in common and others that differ. Emphasis is given to the richness of both carbon nanostructures as prototype examples of nanostructured materials. A glimpse toward future developments in this field is presented.

2,822 citations

01 Jan 2010
TL;DR: This work reports a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation.
Abstract: Graphene nanoribbons—narrow and straight-edged stripes of graphene, or single-layer graphite—are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices. In particular, although the two-dimensional parent material graphene exhibits semimetallic behaviour, quantum confinement and edge effects should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical, sonochemical and lithographic methods as well as through the unzipping of carbon nanotubes, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots, superlattice structures and magnetic devices based on specific graphene nanoribbon edge states.

2,355 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

Journal ArticleDOI
TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

13,474 citations

Journal ArticleDOI
TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Abstract: The model and theoretical understanding of the Raman spectra in disordered and amorphous carbon are given. The nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of \ensuremath{\pi} bonding. Visible Raman data on disordered, amorphous, and diamondlike carbon are classified in a three-stage model to show the factors that control the position, intensity, and widths of the G and D peaks. It is shown that the visible Raman spectra depend formally on the configuration of the ${\mathrm{sp}}^{2}$ sites in ${\mathrm{sp}}^{2}$-bonded clusters. In cases where the ${\mathrm{sp}}^{2}$ clustering is controlled by the ${\mathrm{sp}}^{3}$ fraction, such as in as-deposited tetrahedral amorphous carbon (ta-C) or hydrogenated amorphous carbon (a-C:H) films, the visible Raman parameters can be used to derive the ${\mathrm{sp}}^{3}$ fraction.

12,593 citations