scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth, and demonstrates graphene-siliconmicroring devices showing a high modulation depth.
Abstract: Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modulation, optical–optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene–silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene–silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On–off electro-optical switching with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage.

202 citations

Journal ArticleDOI
02 Dec 2010-ACS Nano
TL;DR: In this article, the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes, have been investigated.
Abstract: Brownian motion is a manifestation of the fluctuation−dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation−dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use density functional theory to obtain the equilibrium atomic positions, simulated scanning tunneling microscopy (STM) images, edge energies, band gaps, and edge-induced strains of graphene ribbons that they analyze in terms of Clar formulas.
Abstract: We show that Clar’s theory of the aromatic sextet is a simple and powerful tool to predict the stability, the π-electron distribution, the geometry, and the electronic/magnetic structure of graphene nanoribbons with different hydrogen edge terminations. We use density functional theory to obtain the equilibrium atomic positions, simulated scanning tunneling microscopy (STM) images, edge energies, band gaps, and edge-induced strains of graphene ribbons that we analyze in terms of Clar formulas. On the basis of their Clar representation, we propose a classification scheme for graphene ribbons that groups configurations with similar bond length alternations, STM patterns, and Raman spectra. Our simulations show how STM images and Raman spectra can be used to identify the type of edge termination.

202 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic efficiency of the titania/graphene (ssG and rGO) nanocomposites was investigated in terms of total NOx (NO and NO 2) removal and NO2 emission.
Abstract: Nanocomposite TiO2/graphene photocatalysts were synthesized via solvothermal process using titanium isopropoxide as a TiO2 precursor. Surfactant-stabilized graphene (ssG) prepared via liquid phase exfoliation and graphene oxide (GO) obtained via oxidation of graphite were used for preparation of two types of composites TiO2/G and TiO2/rGO, respectively, each with graphene loadings 0.01%, 0.1% and 1%. Hydrophilic non ionic surfactant Pluronic F127 was employed in order graphene stabilization in water and homogeneous dispersion with the TiO2 precursor to be achieved. The crystalline structure, composition, morphology, porosity and light absorption of the photocatalysts and their photocatalytic activity in NOx oxidation under UV and visible light irradiation were comparatively investigated. The titania/graphene (ssG and rGO) nanocomposites exhibited higher photocatalytic efficiency than pure TiO2 especially under visible light irradiation in terms of total NOx (NO and NO2) removal and NO2 emission. Differences in the photocatalytic efficiency between the TiO2/G and TiO2/rGO composites were observed originating from the type and the loading of the graphene. In general, the TiO2/rGO exhibited superior efficiency than the TiO2/G and the best results were recorded for low 0.1% graphene loading. The findings are discussed taking into consideration the variation in the BET SSA and the Eg values, as well as the differences in the electronic structure of the ssG and the rGO, the former to be a zero-band gap material and the latter a semiconductor with tunable band gap. The presence of graphene component was determined as a key parameter governing the separation of the photogenerated electron–holes pair through interfacial charge transfer. The significantly increased activity of the TiO2/rGO composites under visible light in NOx removal and the very low levels of NO2 release in comparison to the pure TiO2 render these materials promising photocatalysts for efficient air purification.

202 citations

Journal ArticleDOI
Qiaodan Li1, Yong Li1, Yang Chen1, Lulu Wu1, Chaofan Yang1, Xiaoli Cui1 
01 Sep 2018-Carbon
TL;DR: In this paper, a simple and high-yield route is proposed to synthesize monocrystalline γ-graphyne by mechanochemistry, which has the advantages of high carriers mobility and semiconductor characteristic.

201 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations