scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Jun 2014-Small
TL;DR: In this paper, a general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms of thermal transport at the mesoscopic scale and in low-dimensional systems.
Abstract: The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials.

177 citations

Journal ArticleDOI
04 Jan 2011-ACS Nano
TL;DR: In this paper, the authors observed new combination modes in the range from 1650 to 2300 cm−1 in single-SLG, bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates.
Abstract: We have observed new combination modes in the range from 1650 to 2300 cm−1 in single-(SLG), bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates. A peak at ∼1860 cm−1 (iTALO−) is observed due to a combination of the in-plane transverse acoustic (iTA) and the longitudinal optical (LO) phonons. The intensity of this peak decreases with increasing number of layers and this peak is absent for bulk graphite. The overtone of the out-of-plane transverse optical (oTO) phonon at ∼1750 cm−1, also called the M band, is suppressed for both SLG and IBLG. In addition, two previously unidentified modes at ∼2200 and ∼1880 cm−1 are observed in SLG. The 2220 cm−1 (1880 cm−1) mode is tentatively assigned to the combination mode of in-plane transverse optical (iTO) and TA phonons (oTO+LO phonons) around the K point in the graphene Brillouin zone. Finally, the peak frequency of the 1880 (2220) cm−1 mode is observed to increase (decrease) linearly with increasing graphene layers.

176 citations

Journal ArticleDOI
Huan Wang1, Yu Zhou1, Di Wu1, Lei Liao1, Shuli Zhao1, Hailin Peng1, Zhongfan Liu1 
22 Apr 2013-Small
TL;DR: The B-doped graphene film is a homogeneous monolayer with high crystalline quality, which exhibits a stable p-type doping behavior with a considerably high room-temperature carrier mobility.
Abstract: Substitutionally boron-doped monolayer graphene film is grown on a large scale by using a sole phenylboronic acid as the source in a low-pressure chemical vapor deposition system. The B-doped graphene film is a homogeneous monolayer with high crystalline quality, which exhibits a stable p-type doping behavior with a considerably high room-temperature carrier mobility of about 800 cm(2) V(-1) s(-1) .

176 citations

Journal ArticleDOI
TL;DR: The production and use of dispersible hollow carbon nanospheres (HCSs) are reported as a novel platform for delivering the drug doxorubicine (DOX) and generating additional cellular reactive oxygen species using near-infrared laser irradiation to reduce the resistance of human breast cancer cells to DOX.
Abstract: Under evolutionary pressure from chemotherapy, cancer cells develop resistance characteristics such as a low redox state, which eventually leads to treatment failures. An attractive option for combatting resistance is producing a high concentration of produced free radicals in situ. Here, we report the production and use of dispersible hollow carbon nanospheres (HCSs) as a novel platform for delivering the drug doxorubicine (DOX) and generating additional cellular reactive oxygen species using near-infrared laser irradiation. These irradiated HCSs catalyzed sufficiently persistent free radicals to produce a large number of heat shock factor-1 protein homotrimers, thereby suppressing the activation and function of resistance-related genes. Laser irradiation also promoted the release of DOX from lysosomal DOX@HCSs into the cytoplasm so that it could enter cell nuclei. As a result, DOX@HCSs reduced the resistance of human breast cancer cells (MCF-7/ADR) to DOX through the synergy among photothermal effects, increased generation of free radicals, and chemotherapy with the aid of laser irradiation. HCSs can provide a unique and versatile platform for combatting chemotherapy-resistant cancer cells. These findings provide new clinical strategies and insights for the treatment of resistant cancers.

176 citations

Journal ArticleDOI
TL;DR: The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated and the charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bias voltage and temperature.
Abstract: The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated. Temperature-dependent I–V measurements indicate the concentration of unintentional donors in exfoliated MoS2 to be 3.57 × 1011 cm–2, while the ionized donor concentration is determined as 3.61 × 1010 cm–2. The temperature-dependent measurements also reveal two dominant donor levels, one at 0.27 eV below the conduction band and another located at 0.05 eV below the conduction band. The I–V characteristics are asymmetric with drain bias voltage and dependent on the junction used for the source or drain contact. I–V characteristics of the device are consistent with a long channel one-dimensional field-effect transistor model with Schottky contact. Utilizing devices, which have both graphene/MoS2 and Ti/MoS2 contacts, the Schottky barrier heights of both interfaces are measured. The charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bi...

176 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations