scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
07 Nov 2012-ACS Nano
TL;DR: Large-area uniform Bernal-stacked bi-, tri-, and tetralayer graphene films were successfully synthesized on a Cu surface in selective growth windows, with a finely tuned total pressure and CH(4)/H(2) gas ratio.
Abstract: Few-layer graphene, with Bernal stacking order, is of particular interest to the graphene community because of its unique tunable electronic structure. A synthetic method to produce such large area graphene films with precise thickness from 2 to 4 layers would be ideal for chemists and physicists to explore the promising electronic applications of these materials. Here, large-area uniform Bernal-stacked bi-, tri-, and tetralayer graphene films were successfully synthesized on a Cu surface in selective growth windows, with a finely tuned total pressure and CH4/H2 gas ratio. On the basis of the analyses obtained, the growth mechanism is not an independent homoexpitaxial layer-by-layer growth, but most likely a simultaneous-seeding and self-limiting process.

162 citations

Journal ArticleDOI
TL;DR: In this paper, a simple thermal annealing process was used to transform the naked Cu to Cu oxides while keeping graphene and graphene-covered Cu intact, thus making graphene easily visible under an optical microscope.
Abstract: We detailed a facile detection technique to optically characterize graphene growth and domains directly on growth substrates through a simple thermal annealing process. It was found that thermal annealing transformed the naked Cu to Cu oxides while keeping graphene and graphene-covered Cu intact. This increases the interference color contrast between Cu oxides and Cu, thus making graphene easily visible under an optical microscope. By using this simple method, we studied the factors that affect graphene nucleation and growth and achieved graphene domains with the domain size as large as ~100 μm. The concept of chemically making graphene visible is universal, as demonstrated by the fact that a solution process based on selective H2O2 oxidation has been developed to achieve the similar results in a shorter time. These techniques should be valuable for studies towards elucidating the parameters that control the grains, boundaries, structures and properties of graphene.

162 citations

Journal ArticleDOI
TL;DR: One-step green reduction and PEGylation of nanosized graphene oxide (NGO) is developed to obtain NrGO/PEG as a photothermally controllable drug delivery system, further proving the remarkable synergistic action between photothermal effect of Nrgone/Peg and RV loaded on Nrgo/P EG.

162 citations


Cites background from "Raman spectrum of graphene and grap..."

  • ...201 presence of disorder (about 1350 cm 1) and G band arises from the first order scattering of the E2g phonon of C sp2 atoms (about 1600 cm 1) [33]....

    [...]

Journal ArticleDOI
TL;DR: This work reports on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles, which has significant flexibility and strength gains compared with CVD grown graphene films.
Abstract: Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene.

162 citations

Journal ArticleDOI
TL;DR: In this article, the number of layers of a few-layer MoS2 flakes was determined by scanning Raman measurements on the flakes prepared by exfoliation, and the authors observed a Raman mode corresponding to a rigid shearing oscillation of adjacent layers.
Abstract: Single- and few-layer MoS2 has recently gained attention as an interesting material system for opto-electronics. Here, we report on scanning Raman measurements on few-layer MoS2 flakes prepared by exfoliation. We observe a Raman mode corresponding to a rigid shearing oscillation of adjacent layers. This mode appears at very low Raman shifts between 20 and 30 cm−1. Its position strongly depends on the number of layers, which we independently determine using atomic force microscopy and investigation of the other characteristic Raman modes. Raman spectroscopy of the shear mode, therefore, is a useful tool to determine the number of layers for few-layer MoS2 flakes.

162 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations