scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the spatial distribution of Bernal and rhombohedral stacking in tri-and tetralayer graphene was analyzed using the Raman 2D-mode and it was shown that 15% of exfoliated graphene tri- and tetralayers are composed of micrometer-sized domains of rhombohedric stacking, rather than of usual Bernal stacking.
Abstract: Few-layer graphene (FLG) has been predicted to exist in various crystallographic stacking sequences, which can strongly influence the material's electronic properties. We demonstrate an accurate and efficient method to characterize stacking order in FLG using the distinctive features of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and rhombohedral (ABC) stacking in tri- and tetralayer graphene. We find that 15% of exfoliated graphene tri- and tetralayers is composed of micrometer-sized domains of rhombohedral stacking, rather than of usual Bernal stacking. These domains are stable and remain unchanged for temperatures exceeding 800 °C.

272 citations

Journal ArticleDOI
TL;DR: In this article, Nitrogen-doped carbon nanotubes (NCNTs) have been successfully synthesized via the direct solid pyrolysis of Zn-Fe-ZIF and the N content, N doped state, diameter and formation temperature of the NCNTs can be finely tuned by mixing Zn−Fe−ZIF with proper amounts of dicyandiamide (DCDA).
Abstract: Nitrogen-doped carbon nanotubes (NCNTs) have been successfully synthesized via the direct solid pyrolysis of Zn–Fe-ZIF and the N content, N doped state, diameter and formation temperature of the NCNTs can be finely tuned by mixing Zn–Fe-ZIF with proper amounts of dicyandiamide (DCDA). DCDA serves as the extra nitrogen supplier and favors the formation of NCNTs at relatively low temperature due to its inducing effect for graphitic structure. The synthesized NCNTs, with iron species and high amounts of graphitic N, exhibit higher catalytic activity than commercial Pt/C as oxygen reduction electrocatalysts in alkaline solution.

272 citations

Journal ArticleDOI
TL;DR: In this article, a review of the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene is presented, with a focus on the Raman spectrum.
Abstract: This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac-Schrodinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.

271 citations

Journal ArticleDOI
TL;DR: Low-temperature, scalable chemical vapor deposition of predominantly monolayer graphene films with an average D/G peak ratio of 0.24 and domain sizes in excess of 220 μm(2) is demonstrated via the design of alloy catalysts, highlighting the role of step edges.
Abstract: Low-temperature (∼450 °C), scalable chemical vapor deposition of predominantly monolayer (74%) graphene films with an average D/G peak ratio of 0.24 and domain sizes in excess of 220 μm(2) is demonstrated via the design of alloy catalysts. The admixture of Au to polycrystalline Ni allows a controlled decrease in graphene nucleation density, highlighting the role of step edges. In situ, time-, and depth-resolved X-ray photoelectron spectroscopy and X-ray diffraction reveal the role of subsurface C species and allow a coherent model for graphene formation to be devised.

269 citations

Journal ArticleDOI
22 Sep 2017-ACS Nano
TL;DR: This work demonstrates the highly sensitive MIR photodetection of QD/graphene hybrid phototransistors by using plasmonic silicon (Si) QDs doped with boron (B), and the resulting UV-to-MIR ultrabroadband photodetic features ultrahigh responsivity, gain, and specific detectivity.
Abstract: Highly sensitive photodetection even approaching the single-photon level is critical to many important applications. Graphene-based hybrid phototransistors are particularly promising for high-sensitivity photodetection because they have high photoconductive gain due to the high mobility of graphene. Given their remarkable optoelectronic properties and solution-based processing, colloidal quantum dots (QDs) have been preferentially used to fabricate graphene-based hybrid phototransistors. However, the resulting QD/graphene hybrid phototransistors face the challenge of extending the photodetection into the technologically important mid-infrared (MIR) region. Here, we demonstrate the highly sensitive MIR photodetection of QD/graphene hybrid phototransistors by using plasmonic silicon (Si) QDs doped with boron (B). The localized surface plasmon resonance (LSPR) of B-doped Si QDs enhances the MIR absorption of graphene. The electron-transition-based optical absorption of B-doped Si QDs in the ultraviolet (UV) ...

269 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations