scispace - formally typeset
Search or ask a question
Book

Random vibration and statistical linearization

TL;DR: In this paper, a comprehensive account of statistical linearization with related techniques allowing the solution of a very wide variety of practical non-linear random vibration problems is given, and the principal value of these methods is that they are readily generalized to deal with complex mechanical and structural systems and complex types of excitation such as earthquakes.
Abstract: Interest in the study of random vibration problems using the concepts of stochastic process theory has grown rapidly due to the need to design structures and machinery which can operate reliably when subjected to random loads, for example winds and earthquakes. This is the first comprehensive account of statistical linearization - powerful and versatile methods with related techniques allowing the solution of a very wide variety of practical non-linear random vibration problems. The principal value of these methods is that unlike other analytical methods, they are readily generalized to deal with complex mechanical and structural systems and complex types of excitation such as earthquakes.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations

Journal ArticleDOI
TL;DR: In this article, a review of the past and recent developments in system identification of nonlinear dynamical structures is presented, highlighting their assets and limitations and identifying future directions in this research area.

1,000 citations

Book
19 May 2005
TL;DR: In this article, the authors present a detailed review of liquid sloshing dynamics in rigid containers, including linear forced and non-linear interaction under external and parametric excitations.
Abstract: Preface Introduction 1. Fluid field equations and modal analysis in rigid containers 2. Linear forced sloshing 3. Viscous damping and sloshing suppression devices 4. Weakly nonlinear lateral sloshing 5. Equivalent mechanical models 6. Parametric sloshing (Faraday's waves) 7. Dynamics of liquid sloshing impact 8. Linear interaction of liquid sloshing with elastic containers 9. Nonlinear interaction under external and parametric excitations 10. Interactions with support structures and tuned sloshing absorbers 11. Dynamics of rotating fluids 12. Microgravity sloshing dynamics Bibliography Index.

920 citations

Journal ArticleDOI
TL;DR: A priori error estimates for the computation of the expected value of the solution are given and a comparison of the computational work required by each numerical approximation is included to suggest intuitive conditions for an optimal selection of the numerical approximation.
Abstract: We describe and analyze two numerical methods for a linear elliptic problem with stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the com- putations is to approximate statistical moments of the solution, and, in particular, we give a priori error estimates for the computation of the expected value of the solution. The first method gener- ates independent identically distributed approximations of the solution by sampling the coefficients of the equation and using a standard Galerkin finite element variational formulation. The Monte Carlo method then uses these approximations to compute corresponding sample averages. The sec- ond method is based on a finite dimensional approximation of the stochastic coefficients, turning the original stochastic problem into a deterministic parametric elliptic problem. A Galerkin finite element method, of either the h -o rp-version, then approximates the corresponding deterministic solution, yielding approximations of the desired statistics. We present a priori error estimates and include a comparison of the computational work required by each numerical approximation to achieve a given accuracy. This comparison suggests intuitive conditions for an optimal selection of the numerical approximation.

899 citations


Cites background from "Random vibration and statistical li..."

  • ..., random vibrations, seismic activity, oil reservoir management, and composite materials; see [2, 17, 19, 22, 27, 28, 30, 39, 43] and the references therein....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a nonparametric model of the generalized mass, damping and stiffness matrices is proposed, which does not require identifying the uncertain local parameters and obviates construction of functions that map the domains of uncertain local parameter vectors into the generalized matrix.

499 citations