scispace - formally typeset
Open AccessBook

Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion

Reads0
Chats0
TLDR
In this article, the authors present a survey of regularization tools for rank-deficient problems and problems with ill-conditioned and inverse problems, as well as a comparison of the methods in action.
Abstract
Preface Symbols and Acronyms 1. Setting the Stage. Problems With Ill-Conditioned Matrices Ill-Posed and Inverse Problems Prelude to Regularization Four Test Problems 2. Decompositions and Other Tools. The SVD and its Generalizations Rank-Revealing Decompositions Transformation to Standard Form Computation of the SVE 3. Methods for Rank-Deficient Problems. Numerical Rank Truncated SVD and GSVD Truncated Rank-Revealing Decompositions Truncated Decompositions in Action 4. Problems with Ill-Determined Rank. Characteristics of Discrete Ill-Posed Problems Filter Factors Working with Seminorms The Resolution Matrix, Bias, and Variance The Discrete Picard Condition L-Curve Analysis Random Test Matrices for Regularization Methods The Analysis Tools in Action 5. Direct Regularization Methods. Tikhonov Regularization The Regularized General Gauss-Markov Linear Model Truncated SVD and GSVD Again Algorithms Based on Total Least Squares Mollifier Methods Other Direct Methods Characterization of Regularization Methods Direct Regularization Methods in Action 6. Iterative Regularization Methods. Some Practicalities Classical Stationary Iterative Methods Regularizing CG Iterations Convergence Properties of Regularizing CG Iterations The LSQR Algorithm in Finite Precision Hybrid Methods Iterative Regularization Methods in Action 7. Parameter-Choice Methods. Pragmatic Parameter Choice The Discrepancy Principle Methods Based on Error Estimation Generalized Cross-Validation The L-Curve Criterion Parameter-Choice Methods in Action Experimental Comparisons of the Methods 8. Regularization Tools Bibliography Index.

read more

Citations
More filters
Journal ArticleDOI

A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

TL;DR: A new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically.
Journal ArticleDOI

An overview of full-waveform inversion in exploration geophysics

TL;DR: This review attempts to illuminate the state of the art of FWI by building accurate starting models with automatic procedures and/or recording low frequencies, and improving computational efficiency by data-compression techniquestomake3DelasticFWIfeasible.
Book

Parameter estimation and inverse problems

TL;DR: "Parameter Estimation and Inverse Problems, 2/e" introduces readers to both Classical and Bayesian approaches to linear and nonlinear problems with particular attention paid to computational, mathematical, and statistical issues related to their application to geophysical problems.
Journal ArticleDOI

Quantum algorithm for linear systems of equations.

TL;DR: This work exhibits a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa, and proves that any classical algorithm for this problem generically requires exponentially more time than this quantum algorithm.
Journal ArticleDOI

REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems

TL;DR: The package REGULARIZATION TOOLS consists of 54 Matlab routines for analysis and solution of discrete ill-posed problems, i.e., systems of linear equations whose coefficient matrix has the properties that its condition number is very large, and its singular values decay gradually to zero.