scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rank Pooling for Action Recognition

TL;DR: A function-based temporal pooling method that captures the latent structure of the video sequence data - e.g., how frame-level features evolve over time in a video - and is easy to interpret and implement, fast to compute and effective in recognizing a wide variety of actions.
Abstract: We propose a function-based temporal pooling method that captures the latent structure of the video sequence data - e.g., how frame-level features evolve over time in a video. We show how the parameters of a function that has been fit to the video data can serve as a robust new video representation. As a specific example, we learn a pooling function via ranking machines. By learning to rank the frame-level features of a video in chronological order, we obtain a new representation that captures the video-wide temporal dynamics of a video, suitable for action recognition. Other than ranking functions, we explore different parametric models that could also explain the temporal changes in videos. The proposed functional pooling methods, and rank pooling in particular, is easy to interpret and implement, fast to compute and effective in recognizing a wide variety of actions. We evaluate our method on various benchmarks for generic action, fine-grained action and gesture recognition. Results show that rank pooling brings an absolute improvement of 7-10 average pooling baseline. At the same time, rank pooling is compatible with and complementary to several appearance and local motion based methods and features, such as improved trajectories and deep learning features.
Citations
More filters
Posted Content
TL;DR: The history of person re-identification and its relationship with image classification and instance retrieval is introduced and two new re-ID tasks which are much closer to real-world applications are described and discussed.
Abstract: Person re-identification (re-ID) has become increasingly popular in the community due to its application and research significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems which make use of large data volumes. Considering different tasks, we classify most current re-ID methods into two classes, i.e., image-based and video-based; in both tasks, hand-crafted and deep learning systems will be reviewed. Moreover, two new re-ID tasks which are much closer to real-world applications are described and discussed, i.e., end-to-end re-ID and fast re-ID in very large galleries. This paper: 1) introduces the history of person re-ID and its relationship with image classification and instance retrieval; 2) surveys a broad selection of the hand-crafted systems and the large-scale methods in both image- and video-based re-ID; 3) describes critical future directions in end-to-end re-ID and fast retrieval in large galleries; and 4) finally briefs some important yet under-developed issues.

984 citations


Cites background from "Rank Pooling for Action Recognition..."

  • ...[118] propose a learning-to-rank model to capture how frame features evolve over time in a video, which yields video descriptors of video-wide temporal dynamics....

    [...]

Proceedings ArticleDOI
27 Jun 2016
TL;DR: The new approximate rank pooling CNN layer allows the use of existing CNN models directly on video data with fine-tuning to generalize dynamic images to dynamic feature maps and the power of the new representations on standard benchmarks in action recognition achieving state-of-the-art performance.
Abstract: We introduce the concept of dynamic image, a novel compact representation of videos useful for video analysis especially when convolutional neural networks (CNNs) are used. The dynamic image is based on the rank pooling concept and is obtained through the parameters of a ranking machine that encodes the temporal evolution of the frames of the video. Dynamic images are obtained by directly applying rank pooling on the raw image pixels of a video producing a single RGB image per video. This idea is simple but powerful as it enables the use of existing CNN models directly on video data with fine-tuning. We present an efficient and effective approximate rank pooling operator, speeding it up orders of magnitude compared to rank pooling. Our new approximate rank pooling CNN layer allows us to generalize dynamic images to dynamic feature maps and we demonstrate the power of our new representations on standard benchmarks in action recognition achieving state-of-the-art performance.

580 citations


Cites background or methods from "Rank Pooling for Action Recognition..."

  • ...Such observations were also made in [7]....

    [...]

  • ...Recent works such as [5, 6, 7, 9, 23] pointed out that long term dynamics and temporal patterns are a very important cues for the recognition of actions....

    [...]

  • ...The dynamic image is obtained as a ranking classifier that, similarly to [6, 7], sorts video frames temporally; the difference is that we compute this classifier directly at the level of the image pixels instead of using an intermediate feature representation....

    [...]

  • ...The rank pooling idea, on which our dynamic images are based, was proposed in [6, 7] using hand-crafted representation of the frames, while in [5] authors increase the capacity of rank pooling using a hierarchical approach....

    [...]

Proceedings ArticleDOI
21 Jul 2017
TL;DR: A new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning, which learns temporal representations for videos that generalizes to other related tasks such as action recognition.
Abstract: We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video representation learning where we sample subsequences from videos and ask the network to learn to predict the odd video subsequence. The odd video subsequence is sampled such that it has wrong temporal order of frames while the even ones have the correct temporal order. Therefore, to generate a odd-one-out question no manual annotation is required. Our learning machine is implemented as multi-stream convolutional neural network, which is learned end-to-end. Using odd-one-out networks, we learn temporal representations for videos that generalizes to other related tasks such as action recognition. On action classification, our method obtains 60.3% on the UCF101 dataset using only UCF101 data for training which is approximately 10% better than current state-of-the-art self-supervised learning methods. Similarly, on HMDB51 dataset we outperform self-supervised state-of-the art methods by 12.7% on action classification task.

489 citations


Cites background or methods from "Rank Pooling for Action Recognition..."

  • ...For example, one can use 3D-convolutions [22], recurrent encoders [38], rank-pooling encoders [15] or simply concatenate frames....

    [...]

  • ...Odd-one-out networks can use any of the above methods [22, 38, 15] to learn video representations in self-supervised manner using video data....

    [...]

  • ...Most of the prior work in action recognition is dedicated to hand-crafted features [18] such as dense trajectory features [15, 21, 41, 42]....

    [...]

  • ...There has also been unsupervised temporal feature encoding methods to capture the structure of videos for action classification [13, 14, 15, 29, 36]....

    [...]

Journal ArticleDOI
TL;DR: A new gating mechanism within LSTM module is introduced, with which the network can learn the reliability of the sequential data and accordingly adjust the effect of the input data on the updating procedure of the long-term context representation stored in the unit's memory cell.
Abstract: Skeleton-based human action recognition has attracted a lot of research attention during the past few years. Recent works attempted to utilize recurrent neural networks to model the temporal dependencies between the 3D positional configurations of human body joints for better analysis of human activities in the skeletal data. The proposed work extends this idea to spatial domain as well as temporal domain to better analyze the hidden sources of action-related information within the human skeleton sequences in both of these domains simultaneously. Based on the pictorial structure of Kinect's skeletal data, an effective tree-structure based traversal framework is also proposed. In order to deal with the noise in the skeletal data, a new gating mechanism within LSTM module is introduced, with which the network can learn the reliability of the sequential data and accordingly adjust the effect of the input data on the updating procedure of the long-term context representation stored in the unit's memory cell. Moreover, we introduce a novel multi-modal feature fusion strategy within the LSTM unit in this paper. The comprehensive experimental results on seven challenging benchmark datasets for human action recognition demonstrate the effectiveness of the proposed method.

436 citations


Cites background from "Rank Pooling for Action Recognition..."

  • ...HUMAN action recognition is a fast developing research area due to its wide applications in intelligent surveillance, human-computer interaction, robotics, and so on [1], [2]....

    [...]

Proceedings ArticleDOI
Dejing Xu1, Jun Xiao1, Zhou Zhao1, Jian Shao1, Di Xie, Yueting Zhuang1 
15 Jun 2019
TL;DR: A self-supervised spatiotemporal learning technique which leverages the chronological order of videos to learn the spatiotmporal representation of the video by predicting the order of shuffled clips from the video.
Abstract: We propose a self-supervised spatiotemporal learning technique which leverages the chronological order of videos. Our method can learn the spatiotemporal representation of the video by predicting the order of shuffled clips from the video. The category of the video is not required, which gives our technique the potential to take advantage of infinite unannotated videos. There exist related works which use frames, while compared to frames, clips are more consistent with the video dynamics. Clips can help to reduce the uncertainty of orders and are more appropriate to learn a video representation. The 3D convolutional neural networks are utilized to extract features for clips, and these features are processed to predict the actual order. The learned representations are evaluated via nearest neighbor retrieval experiments. We also use the learned networks as the pre-trained models and finetune them on the action recognition task. Three types of 3D convolutional neural networks are tested in experiments, and we gain large improvements compared to existing self-supervised methods.

406 citations


Cites methods from "Rank Pooling for Action Recognition..."

  • ...[10] use the ranking machines to capture the evolution of appearances among frames, and the learned functional parameters can be used as the video representation....

    [...]

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations


Additional excerpts

  • ...We conclude this paper in Section 7....

    [...]

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations


"Rank Pooling for Action Recognition..." refers methods in this paper

  • ...Last, we use the notation x1:t or v1:t to denote a sub-sequence from time step 1 to t....

    [...]

Proceedings Article
08 Dec 2014
TL;DR: The authors used a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector.
Abstract: Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.

12,299 citations