scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rapamycin extends murine lifespan but has limited effects on aging

TL;DR: While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes and had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects.
Abstract: Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin’s effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin’s longevity effects from effects on aging itself.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Rapamycin, a specific inhibitor of mTOR, has been shown to be useful in the treatment of certain diseases and its mechanism of action is discussed and the potential utility of combination therapy with rapamycin is highlighted.

860 citations

Journal ArticleDOI
TL;DR: Because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.
Abstract: The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC9s cell growth– and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. Significance: MYC9s expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities. Cancer Discov; 5(10); 1024–39. ©2015 AACR.

833 citations

Journal ArticleDOI
26 Jan 2018-Science
TL;DR: Evidence that increased intake of the polyamine spermidine appears to reproduce many of the healthful effects of caloric restriction is reviewed, and its cellular actions, which include enhancement of autophagy and protein deacetylation, are explained.
Abstract: Interventions that delay aging and protect from age-associated disease are slowly approaching clinical implementation. Such interventions include caloric restriction mimetics, which are defined as agents that mimic the beneficial effects of dietary restriction while limiting its detrimental effects. One such agent, the natural polyamine spermidine, has prominent cardioprotective and neuroprotective effects and stimulates anticancer immunosurveillance in rodent models. Moreover, dietary polyamine uptake correlates with reduced cardiovascular and cancer-related mortality in human epidemiological studies. Spermidine preserves mitochondrial function, exhibits anti-inflammatory properties, and prevents stem cell senescence. Mechanistically, it shares the molecular pathways engaged by other caloric restriction mimetics: It induces protein deacetylation and depends on functional autophagy. Because spermidine is already present in daily human nutrition, clinical trials aiming at increasing the uptake of this polyamine appear feasible.

542 citations

Journal ArticleDOI
TL;DR: Nlrp3 inflammasome is revealed as an upstream target that controls age-related inflammation and an innovative therapeutic strategy to lower NLRp3 activity to delay multiple age- related chronic diseases is offered.

469 citations


Cites background from "Rapamycin extends murine lifespan b..."

  • ...Notably, enhanced lifespan in mice treated with rapamycin is associated with amelioration of few aging phenotypes and also leads to several detrimental effects, such as increased cataract formation, testicular degeneration, and reduced insulin sensitivity (Lamming et al., 2012; Neff et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: Some of the endocrine and metabolic changes seen in diet‐restricted mice are not seen in mice exposed toRapamycin, and the pattern of expression of hepatic genes involved in xenobiotic metabolism is also quite distinct in rapamycin‐treated and diet‐ restricted mice, suggesting that these two interventions for extending mouse lifespan differ in many respects.
Abstract: Rapamycin, an inhibitor of mTOR kinase, increased median lifespan of genetically heterogeneous mice by 23% (males) to 26% (females) when tested at a dose threefold higher than that used in our previous studies; maximal longevity was also increased in both sexes. Rapamycin increased lifespan more in females than in males at each dose evaluated, perhaps reflecting sexual dimorphism in blood levels of this drug. Some of the endocrine and metabolic changes seen in diet-restricted mice are not seen in mice exposed to rapamycin, and the pattern of expression of hepatic genes involved in xenobiotic metabolism is also quite distinct in rapamycin-treated and diet-restricted mice, suggesting that these two interventions for extending mouse lifespan differ in many respects.

461 citations

References
More filters
Journal ArticleDOI
TL;DR: The survey shows significant interobserver and interlaboratory variation in measurement when examining the same echoes and indicates a need for ongoing education, quality control and standardization of measurement criteria.
Abstract: Four hundred M-mode echocardiographic surveys were distributed to determine interobserver variability in M-mode echocardiographic measurements. This was done with a view toward examining the need and determining the criteria for standardization of measurement. Each survey consisted of five M-mode echocardiograms with a calibration marker, measured by the survey participants anonymously. The echoes were judged of adequate quality for measurement of structures. Seventy-six of the 400 (19%) were returned, allowing comparison of interobserver variability as well as examination of the measurement criteria which were used. Mean measurements and percent uncertainty were derived for each structure for each criterion of measurement. For example, for the aorta, 33% of examiners measured the aorta as an outer/inner or leading edge dimension, and 20% measured it as an outer/outer dimension. The percent uncertainty for the measurement (1.97 SD divided by the mean) showed a mean of 13.8% for the 25 packets of five echoes measured using the former criteria and 24.2% using the latter criteria. For ventricular chamber and cavity measurements, almost one-half of the examiners used the peak of the QRS and one-half of the examiners used the onset of the QRS for determining end-diastole. Estimates of the percent of measurement uncertainty for the septum, posterior wall and left ventricular cavity dimension in this study were 10--25%. They were much higher (40--70%) for the right ventricular cavity and right ventricular anterior wall. The survey shows significant interobserver and interlaboratory variation in measurement when examining the same echoes and indicates a need for ongoing education, quality control and standardization of measurement criteria. Recommendations for new criteria for measurement of M-mode echocardiograms are offered.

7,649 citations


"Rapamycin extends murine lifespan b..." refers methods in this paper

  • ...Echocardiography leading edge method (51)....

    [...]

  • ...Society of Echocardiography (ASE) leading edge method (51) using the...

    [...]

Journal ArticleDOI
16 Jul 2009-Nature
TL;DR: It is reported that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age.
Abstract: Inhibition of the TOR signalling pathway by genetic or pharmacological intervention extends lifespan in invertebrates, including yeast, nematodes and fruitflies; however, whether inhibition of mTOR signalling can extend lifespan in a mammalian species was unknown. Here we report that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age. On the basis of age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males. The effect was seen at three independent test sites in genetically heterogeneous mice, chosen to avoid genotype-specific effects on disease susceptibility. Disease patterns of rapamycin-treated mice did not differ from those of control mice. In a separate study, rapamycin fed to mice beginning at 270 days of age also increased survival in both males and females, based on an interim analysis conducted near the median survival point. Rapamycin may extend lifespan by postponing death from cancer, by retarding mechanisms of ageing, or both. To our knowledge, these are the first results to demonstrate a role for mTOR signalling in the regulation of mammalian lifespan, as well as pharmacological extension of lifespan in both genders. These findings have implications for further development of interventions targeting mTOR for the treatment and prevention of age-related diseases.

3,216 citations


"Rapamycin extends murine lifespan b..." refers background or result in this paper

  • ...Rapamycin-induced lifespan extension is known to occur in mice of both genders (with larger effect sizes in females in a genetically heterogeneous stock of mice) (9, 10)....

    [...]

  • ...Cancers are the leading cause of death in many mouse strains, including C57BL/6J and all strains in which rapamycin was previously shown to have longevity effects (9, 15), which indicates that rapamycin’s antineoplastic properties may underlie its longevity effects in mice....

    [...]

  • ...The recent report of lifespan extension in mice treated with the FDA-approved mammalian TOR (mTOR) inhibitor rapamycin (9) represented the first demonstration of pharmacological extension of maximal lifespan in mammals; additional studies have since confirmed this important finding (8, 10, 11)....

    [...]

  • ...Our data are in line with prior reports of delayed cancer-caused death in rapamycin-treated aging mice (9, 10) and support the view that lethal neoplastic disease is delayed in rapamycin-treated animals during the course of normal aging....

    [...]

  • ...Discussion Rapamycin was recently shown to increase lifespan in mice (9, 10)....

    [...]

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: It is proposed that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.
Abstract: Calorie restriction increases life span in many organisms, including the budding yeast Saccharomyces cerevisiae . From a large-scale analysis of 564 single-gene–deletion strains of yeast, we identified 10 gene deletions that increase replicative life span. Six of these correspond to genes encoding components of the nutrient-responsive TOR and Sch9 pathways. Calorie restriction of tor1 D or sch9 D cells failed to further increase life span and, like calorie restriction, deletion of either SCH9 or TOR1 increased life span independent of the Sir2 histone deacetylase. We propose that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.

1,260 citations


"Rapamycin extends murine lifespan b..." refers background in this paper

  • ...Specifically, the target of rapamycin (TOR) signaling pathway is an important and evolutionarily conserved player in longevity regulation, with effects in flies (3), worms (4, 5), yeast (6, 7), and mice (8–11)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity.

1,205 citations

Journal ArticleDOI
TL;DR: It is demonstrated here that under physiological conditions neurogenesis continues to occur in the dentate gyrus of senescent mice and can be stimulated by living in an enriched environment and interpreted as a survival-promoting effect that is selective for neurons.
Abstract: We demonstrate here that under physiological conditions neurogenesis continues to occur in the dentate gyrus of senescent mice and can be stimulated by living in an enriched environment. Neurogenesis was investigated by confocal microscopy of three-channel immunofluorescent staining for the proliferation marker bromodeoxyuridine (BrdU) and neuronal and glial markers. Quantification was performed with unbiased stereological counting techniques. Neurogenesis decreased with increasing age. Stimulation of adult and aged mice by switching from standard housing to an enriched environment with opportunities for social interaction, exploration, and physical activity for 68 d resulted in an increased survival of labeled cells. Phenotypic analysis revealed that, in enriched living animals, relatively more cells differentiated into neurons, resulting in a threefold net increase of BrdU-labeled neurons in 20-month-old mice (105 vs 32 cells) and a more than twofold increase in 8-month-old mice (684 vs 285 cells) compared with littermates living under standard laboratory conditions. Corresponding absolute numbers of BrdU-positive astrocytes and BrdU-positive cells that did not show colabeling for neuronal or glial markers were not influenced. The effect on the relative distribution of phenotypes can be interpreted as a survival-promoting effect that is selective for neurons. Proliferation of progenitor cells appeared unaffected by environmental stimulation.

1,152 citations


"Rapamycin extends murine lifespan b..." refers background in this paper

  • ...There is a known strong age-dependent decline in adult hippocampal neurogenesis (21)....

    [...]

Related Papers (5)