scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air

01 Jan 2019-Solar Energy (Pergamon)-Vol. 177, pp 255-261
TL;DR: In this article, a planar inverted structured perovskite solar cell (PSC) was fabricated in an ambient condition with a PCE of 12.4% as compared to that (13.3%) of PSC fabricated in glove box filled with nitrogen.
About: This article is published in Solar Energy.The article was published on 2019-01-01. It has received 32 citations till now. The article focuses on the topics: Perovskite solar cell & Coating.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of perovskite-based solar cells is presented, focusing on the recent progress in morphology optimizations by various processing conditions such as annealing condition, additive effects, Lewis acid base adduct approach, precursor solution aging and post-device ligand treatment emphasizing on grain sizes, film uniformity, defect passivation, ambient compatibility and device efficiency and stability.
Abstract: Hybrid organic–inorganic halide perovskite based solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 25% within a decade. This technology has drawn tremendous research interest because of facile solution processability, ease of large scale manufacturing and ultra-low cost production of perovskite based thin film solar cells. It has been observed that performances of perovskite-based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. The high-quality perovskite films have made a significant impact on the fabrication of efficient and stable hybrid perovskite solar cells. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth such as sequential deposition, doctor blading, slot die coating and spray coating have been applied to achieve the most appropriate morphology necessary for highly efficient and stable solar cells. This review focuses on the recent progress in morphology optimizations by various processing condition such as annealing condition, additive effects, Lewis acid–base adduct approach, precursor solution aging and post-device ligand treatment emphasizing on grain sizes, film uniformity, defect passivation, ambient compatibility and device efficiency and stability. In this review, we also discussed recently developed bifacial stamping technique and deposition methods for large-area and roll-to-roll fabrication of highly efficient and stable perovskite solar cells.

128 citations

Journal ArticleDOI
TL;DR: In this paper, perovskite solar cells in planar p-i-n configuration based on single-step, anti-solvent-free, low-temperature (70 °C) slot-die-coated methylammonium lead tri-iodide (MAP...
Abstract: In this work, we report perovskite solar cells in the planar p–i–n configuration based on single-step, anti-solvent-free, low-temperature (70 °C) slot-die-coated methylammonium lead tri-iodide (MAP...

106 citations

Journal ArticleDOI
TL;DR: In this article, the progress reported in the literature where slot-die coating has been used for the deposition of both the perovskite layer and other layers in the solar cell device stack is discussed.
Abstract: To make perovskite solar cells an industrially relevant technology large area deposition techniques are needed and one of the most promising is slot-die coating. This review article details the progress reported in the literature where slot-die coating has been used for the deposition of both the perovskite layer and other layers in the perovskite solar cell device stack. An overview of the methods used to adapt the coating process, materials and drying conditions in order to create high quality layers and devices is given and an outlook on future research directions in this field is made.

84 citations

Journal ArticleDOI
TL;DR: In this article, a review of solution-processed perovskite solar cells (PSCs) in the lab-scale has reached an incredible level of 25.5%.
Abstract: In the last decade, the power conversion efficiency (PCE) of solution-processed perovskite solar cells (PSCs) in the lab-scale has reached an incredible level of 25.5%. Generally, PSCs are composed of a stack consisting of a perovskite thin-film sandwiched between an electron transporting layer (ETL) and a hole transporting layer (HTL). Although the quality of the ETL and HTL interfaces with the perovskite thin-film is important, the quality of the perovskite thin-film is also critical to achieving high-performance PSCs. Low-temperature deposition of organic–inorganic perovskite thin-films by simple solution processes is one of the significant advantages of PSCs compared to other well-developed semiconductors for manufacturing solar cells. However, growing highly uniform and crystalline solution-processed perovskite thin-films is very challenging due to multiple phenomena during film formation, including solvent evaporation, wetting effects, inhomogeneous film stress and uncontrolled nucleation and growth. Therefore, understanding the different stages of perovskite crystallization is critical for achieving high-quality films and realizing higher PCEs. On the other hand, switching to large-scale solar modules leads to a substantial loss in performance, decreasing the chance of commercialization of this technology. Therefore, developing large-scale deposition techniques for reliable perovskite crystallization is very vital for scaling up PSCs. So far, several solution-processed methods such as anti-solvent and two-step processes have been developed for lab-scale perovskite thin-films deposition. However, these methods are not applicable for large-scale perovskite deposition. This review explores various scalable solution-processed perovskite deposition techniques. Moreover, different solvent quenching techniques as the most critical step of large-scale perovskite crystallization are discussed to provide a comprehensive view for achieving high-quality perovskite thin-films with large areas. Finally, the existing challenges and opportunities to push forward the commercialization of PSCs are discussed.

56 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: In this paper, the most appropriate strategies to fabricate efficient and stable perovskite solar cells under ambient conditions are summarized along with multiple roadmaps to assist in the future development of this technology.
Abstract: Organic–inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention in recent years due to their high-power conversion efficiency, simple fabrication, and low material cost. However, due to their high sensitivity to moisture and oxygen, high efficiency PSCs are mainly constructed in an inert environment. This has led to significant concerns associated with the long-term stability and manufacturing costs, which are some of the major limitations for the commercialization of this cutting-edge technology. Over the past few years, excellent progress in fabricating PSCs in ambient conditions has been made. These advancements have drawn considerable research interest in the photovoltaic community and shown great promise for the successful commercialization of efficient and stable PSCs. In this review, after providing an overview to the influence of an ambient fabrication environment on perovskite films, recent advances in fabricating efficient and stable PSCs in ambient conditions are discussed. Along with discussing the underlying challenges and limitations, the most appropriate strategies to fabricate efficient PSCs under ambient conditions are summarized along with multiple roadmaps to assist in the future development of this technology.

49 citations

References
More filters
Journal ArticleDOI
22 Jan 2015-Nature
TL;DR: This work combines the promising—but relatively unstable formamidinium lead iodide with FAPbI3 with methylammonium lead bromide as the light-harvesting unit in a bilayer solar-cell architecture and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination.
Abstract: Inorganic–organic lead halide perovskite could be efficient when used as the light-harvesting component of solar cells; here incorporation of methylammonium lead bromide into formamidinium lead iodide stabilizes the perovskite and improves the power conversion efficiency of the solar cell up to 17.9 per cent. Inorganic–organic lead halide perovskites are currently attracting considerable interest for solar-cell applications. Most of the best performing perovskite solar cells to date have made use of methylammonium-based perovskites; formamidinium-based perovskites have also shown promise, but are not as stable. Now Nam Joong Jeon and colleagues show that the formamidinium-based perovskites can be stabilized by the addition of some methylammonium-based perovskite, and that solar cells incorporating the resulting compositionally tuned materials can reach new heights of efficiency. Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic–organic lead halide perovskite materials1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium lead halide materials1,2,3,4,5,6,7,8,9,10. Here we combine the promising—owing to its comparatively narrow bandgap—but relatively unstable formamidinium lead iodide (FAPbI3) with methylammonium lead bromide (MAPbBr3) as the light-harvesting unit in a bilayer solar-cell architecture13. We investigated phase stability, morphology of the perovskite layer, hysteresis in current–voltage characteristics, and overall performance as a function of chemical composition. Our results show that incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3 and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination of 100 milliwatts per square centimetre. These findings further emphasize the versatility and performance potential of inorganic–organic lead halide perovskite materials for photovoltaic applications.

5,291 citations

Journal ArticleDOI
30 Jun 2017-Science
TL;DR: The introduction of additional iodide ions into the organic cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects, enabling the fabrication of PSCs with a certified power conversion efficiency.
Abstract: The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell’s performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.

4,603 citations

Journal ArticleDOI
TL;DR: Using highly sensitive photothermal deflection and photocurrent spectroscopy, the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature is measured, finding a high absorption coefficient with particularly sharp onset and a compositional change of the material.
Abstract: Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm–1. These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.

2,099 citations

Journal ArticleDOI
29 Oct 1999-Science
TL;DR: A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated and molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin- film transistors.
Abstract: Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 06 square centimeters per volt-second and current modulation greater than 10(4) Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors

1,887 citations

Journal ArticleDOI
TL;DR: All-solid-state donor/acceptor planar-heterojunction (PHJ) hybrid solar cells are constructed and their excellent performance measured.
Abstract: All-solid-state donor/acceptor planar-heterojunction (PHJ) hybrid solar cells are constructed and their excellent performance measured. The deposition of a thin C60 fullerene or fullerene-derivative (acceptor) layer in vacuum on a CH3 NH3 PbI3 perovskite (donor) layer creates a hybrid PHJ that displays the photovoltaic effect. Such heterojunctions are shown to be suitable for the development of newly structured, hybrid, efficient solar cells.

1,327 citations

Trending Questions (1)
When will perovskite solar cells be available for homes?

Our study paves a facile way to rapid manufacture and mass production of perovskite solar cells.