scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix

23 Feb 1998-Journal of Cell Biology (The Rockefeller University Press)-Vol. 140, Iss: 4, pp 821-829
TL;DR: The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers, and it is proposed that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse.
Abstract: It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100x objective (0.8-micron spot diam) gave half-times for fluorescence recovery of 15-19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2-3 x 10(-7) cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid beta-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 +/- 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, approximately 0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Live cell imaging, in combination with photobleaching, energy transfer or fluorescence correlation spectroscopy are providing unprecedented insights into the movement of proteins and their interactions with cellular components.
Abstract: Since the advent of the green fluorescent protein, the subcellular localization, mobility, transport routes and binding interactions of proteins can be studied in living cells. Live cell imaging, in combination with photobleaching, energy transfer or fluorescence correlation spectroscopy are providing unprecedented insights into the movement of proteins and their interactions with cellular components. Remarkably, these powerful techniques are accessible to non-specialists using commercially available microscope systems.

1,213 citations

Journal ArticleDOI
04 Apr 2003-Science
TL;DR: The development of highly visible and minimally perturbing fluorescent proteins that, together with updated fluorescent imaging techniques, are providing unprecedented insights into the movement of proteins and their interactions with cellular components in living cells are traced.
Abstract: The ability to visualize, track, and quantify molecules and events in living cells with high spatial and temporal resolution is essential for understanding biological systems. Only recently has it become feasible to carry out these tasks due to the advent of fluorescent protein technology. Here, we trace the development of highly visible and minimally perturbing fluorescent proteins that, together with updated fluorescent imaging techniques, are providing unprecedented insights into the movement of proteins and their interactions with cellular components in living cells.

1,016 citations

Journal ArticleDOI
TL;DR: It is proposed that the addition of crowding agents should become as routine as controlling pH and ionic strength if the authors are to meet the objective of studying biological molecules under more physiologically relevant conditions.

1,002 citations

Journal ArticleDOI
TL;DR: The results suggest that the highly restricted diffusion of DNA fragments in nucleoplasm results from extensive binding to immobile obstacles and that the decreased lateral mobility of DNAs >250 bp in cytoplasm is because of molecular crowding.

771 citations

Journal ArticleDOI
TL;DR: The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH and suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonations and conformational changes at lower pH.

700 citations


Cites background from "Rapid Diffusion of Green Fluorescen..."

  • ..., 1997) and mitochondria (Partikian et al., 1998) by fluorescence photobleaching and time-resolved fluorescence methods....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The results show that the fusion proteins are transported into the mitochondria and that they restore the ability for the yeast mutants CS1-, MDH1-, and CS1-/MDH1- to grow on acetate.
Abstract: We have constructed two different fusion proteins consisting of the C-terminal end of CS1 fused in-frame to the N-terminal end of MDH1 and HSA, respectively. The fusion proteins were expressed in mutants of Saccharomyces cerevisiae in which CS1 and MDH1 had been deleted and the phenotypes of the transformants characterized. The results show that the fusion proteins are transported into the mitochondria and that they restore the ability for the yeast mutants CS1-, MDH1-, and CS1-/MDH1- to grow on acetate. Determination of CS1 activity in isolated mitochondria showed a 10-fold increase for the strain that expressed native CS1, relative to the parental. In the transformant with CS1/MDH1 fusion protein, parental levels of CS1 were observed, while one-fifth this amount was observed for the strain expressing the CS1/HSA conjugate. Oxygen consumption studies on isolated mitochondria did not show any significant differences between parental-type yeast and the strains expressing the different fusion proteins or native CS1. [3(-13)C]Propionate was used to study the Krebs TCA cycle metabolism of yeast cells containing CS1/MDH1 fusion constructs. The 13C NMR study was performed in respiratory-competent parental yeast cells and using the genetically engineered yeast cells consisting of CS1- mutants expressing native CS1 and the fusion proteins CS1/MDH1 and CS1/HSA, respectively. [3(-13)C]Propionate is believed to be metabolized to [2(-13)C]succinyl-CoA before it enters the TCA cycle in the mitochondria. This metabolite is then oxidized through two symmetrical intermediates, succinate and fumarate, followed by conversion to malate, oxalacetate, and other metabolites such as alanine.(ABSTRACT TRUNCATED AT 250 WORDS)

19 citations


"Rapid Diffusion of Green Fluorescen..." refers background in this paper

  • ...There is a substantial body of kinetic evidence supporting an apparent channeling mechanism for certain metabolic reactions (Ovadi, 1995; Lindbladh et al., 1994; Elcock and McCammon, 1996)....

    [...]