scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Rapid object detection using a boosted cascade of simple features

01 Dec 2001-Vol. 1, pp 511-518
TL;DR: A machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates and the introduction of a new image representation called the "integral image" which allows the features used by the detector to be computed very quickly.
Abstract: This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "integral image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers. The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
Ross Girshick1
07 Dec 2015
TL;DR: Fast R-CNN as discussed by the authors proposes a Fast Region-based Convolutional Network method for object detection, which employs several innovations to improve training and testing speed while also increasing detection accuracy and achieves a higher mAP on PASCAL VOC 2012.
Abstract: This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x faster, and is more accurate. Fast R-CNN is implemented in Python and C++ (using Caffe) and is available under the open-source MIT License at https://github.com/rbgirshick/fast-rcnn.

14,824 citations

Posted Content
Ross Girshick1
TL;DR: This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection that builds on previous work to efficiently classify object proposals using deep convolutional networks.
Abstract: This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x faster, and is more accurate. Fast R-CNN is implemented in Python and C++ (using Caffe) and is available under the open-source MIT License at this https URL.

14,747 citations


Cites methods from "Rapid object detection using a boos..."

  • ...es of object detectors: those that use a sparse set of object proposals (e.g., selective search [21]) and those that use a dense set (e.g., DPM [8]). Classifying sparse proposals is a type of cascade [22] in which the proposal mechanism first rejects a vast number of candidates leaving the classifier with a small set to evaluate. This cascade improves detection accuracy when applied to DPM detections [2...

    [...]

Book ChapterDOI
07 May 2006
TL;DR: A novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Abstract: In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF's strong performance.

13,011 citations


Cites background from "Rapid object detection using a boos..."

  • ...In order to make the paper more self-contained, we succinctly discuss the concept of integral images, as defined by [23]....

    [...]

Journal ArticleDOI
TL;DR: A novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.

12,449 citations


Cites methods from "Rapid object detection using a boos..."

  • ...This lends itself to the use of integral images as made popular by Viola and Jones [41], which reduces the computation time drastically....

    [...]

Proceedings ArticleDOI
Tsung-Yi Lin1, Priya Goyal2, Ross Girshick2, Kaiming He2, Piotr Dollár2 
07 Aug 2017
TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Abstract: The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors.

12,161 citations


Cites background or methods from "Rapid object detection using a boos..."

  • ...A common solution is to perform some form of hard negative mining [32, 36, 8, 30, 21] that samples hard examples during training or more complex sampling/reweighing schemes [2]....

    [...]

  • ...Class Imbalance: Both classic one-stage object detection methods, like boosted detectors [36, 5] and DPMs [8], and more recent methods, like SSD [21], face a large class imbalance during training....

    [...]

  • ...Viola and Jones [36] used boosted object detectors for face detection, leading to widespread adoption of such models....

    [...]

  • ...This inefficiency is a classic problem in object detection that is typically addressed via techniques such as bootstrapping [32, 28] or hard example mining [36, 8, 30]....

    [...]

References
More filters
Journal ArticleDOI
01 Aug 1997
TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Abstract: In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multiple-outcome prediction, repeated games, and prediction of points in Rn. In the second part of the paper we apply the multiplicative weight-update technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of the new boosting algorithm to the problem of learning functions whose range, rather than being binary, is an arbitrary finite set or a bounded segment of the real line.

15,813 citations

Journal ArticleDOI
TL;DR: In this article, a visual attention system inspired by the behavior and the neuronal architecture of the early primate visual system is presented, where multiscale image features are combined into a single topographical saliency map.
Abstract: A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing saliency. The system breaks down the complex problem of scene understanding by rapidly selecting, in a computationally efficient manner, conspicuous locations to be analyzed in detail.

10,525 citations

Journal ArticleDOI
TL;DR: A neural network-based upright frontal face detection system that arbitrates between multiple networks to improve performance over a single network, and a straightforward procedure for aligning positive face examples for training.
Abstract: We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present a straightforward procedure for aligning positive face examples for training. To collect negative examples, we use a bootstrap algorithm, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting nonface training examples, which must be chosen to span the entire space of nonface images. Simple heuristics, such as using the fact that faces rarely overlap in images, can further improve the accuracy. Comparisons with several other state-of-the-art face detection systems are presented, showing that our system has comparable performance in terms of detection and false-positive rates.

4,105 citations


"Rapid object detection using a boos..." refers methods or result in this paper

  • ...Toward this end we have constructed a frontal face detection system which achieves detection and false positive rates which are equivalent to the best published results [14, 11, 13, 10, 1]....

    [...]

  • ...We tested our system on the MIT+CMU frontal face test set [11]....

    [...]

  • ...Evaluated on the MIT+CMU test set [11], an average of 10 features out of a total of 6061 are evaluated per sub-window....

    [...]

  • ...in which two detection networks are used [11]....

    [...]

  • ...For the Rowley-Baluja-Kanade results [11], a number of different versions of their detector were tested yielding a number of different results they are all listed in under the same heading....

    [...]

Journal ArticleDOI
TL;DR: The authors present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively steer a filter to any orientation, and to determine analytically the filter output as a function of orientation.
Abstract: The authors present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively steer a filter to any orientation, and to determine analytically the filter output as a function of orientation. Steerable filters may be designed in quadrature pairs to allow adaptive control over phase as well as orientation. The authors show how to design and steer the filters and present examples of their use in the analysis of orientation and phase, angularly adaptive filtering, edge detection, and shape from shading. One can also build a self-similar steerable pyramid representation. The same concepts can be generalized to the design of 3-D steerable filters. >

3,365 citations

Proceedings ArticleDOI
17 Jun 1997
TL;DR: A decomposition algorithm that guarantees global optimality, and can be used to train SVM's over very large data sets is presented, and the feasibility of the approach on a face detection problem that involves a data set of 50,000 data points is demonstrated.
Abstract: We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs., 1985) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees global optimality, and can be used to train SVM's over very large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of optimality conditions which are used both to generate improved iterative values, and also establish the stopping criteria for the algorithm. We present experimental results of our implementation of SVM, and demonstrate the feasibility of our approach on a face detection problem that involves a data set of 50,000 data points.

2,764 citations


"Rapid object detection using a boos..." refers background in this paper

  • ...AdaBoost provides an effective learning algorithm and strong bounds on generalization performance [12, 8, 9]....

    [...]