scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rate-compatible punctured convolutional codes (RCPC codes) and their applications

01 Apr 1988-IEEE Transactions on Communications (IEEE)-Vol. 36, Iss: 4, pp 389-400
TL;DR: In this article, the concept of punctured convolutional codes is extended by punctuating a low-rate 1/N code periodically with period P to obtain a family of codes with rate P/(P+l), where l can be varied between 1 and (N-1)P. This allows transmission of incremental redundancy in ARQ/FEC (automatic repeat request/forward error correction) schemes and continuous rate variation to change from low to high error protection within a data frame.
Abstract: The concept of punctured convolutional codes is extended by punctuating a low-rate 1/N code periodically with period P to obtain a family of codes with rate P/(P+l), where l can be varied between 1 and (N-1)P. A rate-compatibility restriction on the puncturing tables ensures that all code bits of high rate codes are used by the lower-rate codes. This allows transmission of incremental redundancy in ARQ/FEC (automatic repeat request/forward error correction) schemes and continuous rate variation to change from low to high error protection within a data frame. Families of RCPC codes with rates between 8/9 and 1/4 are given for memories M from 3 to 6 (8 to 64 trellis states) together with the relevant distance spectra. These codes are almost as good as the best known general convolutional codes of the respective rates. It is shown that the same Viterbi decoder can be used for all RCPC codes of the same M. the application of RCPC codes to hybrid ARQ/FEC schemes is discussed for Gaussian and Rayleigh fading channels using channel-state information to optimise throughput. >
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the developments in cooperative communication, a new class of methods called cooperative communication has been proposed that enables single-antenna mobiles in a multi-user environment to share their antennas and generate a virtual multiple-antenn transmitter that allows them to achieve transmit diversity.
Abstract: Transmit diversity generally requires more than one antenna at the transmitter. However, many wireless devices are limited by size or hardware complexity to one antenna. Recently, a new class of methods called cooperative communication has been proposed that enables single-antenna mobiles in a multi-user environment to share their antennas and generate a virtual multiple-antenna transmitter that allows them to achieve transmit diversity. This article presents an overview of the developments in this burgeoning field.

3,130 citations

Proceedings ArticleDOI
27 Nov 1989
TL;DR: The Viterbi algorithm is modified to deliver the most likely path sequence in a finite-state Markov chain, as well as either the a posteriori probability for each bit or a reliability value, with the aim of producing soft decisions to be used in the decoding of outer codes.
Abstract: The Viterbi algorithm (VA) is modified to deliver the most likely path sequence in a finite-state Markov chain, as well as either the a posteriori probability for each bit or a reliability value. With this reliability indicator the modified VA produces soft decisions to be used in the decoding of outer codes. The inner software output Viterbi algorithm (SOVA) accepts and delivers soft sample values and can be regraded as a device for improving the signal-to-noise ratio, similar to an FM demodulator. Several applications are investigated to show the gain over the conventional hard-deciding VA, including concatenated convolutional codes, concatenation of trellis-coded modulation with convolutional FEC (forward error correcting) codes, and coded Viterbi equalization. For these applications additional gains of 1-4 dB as compared to the classical hard-deciding algorithms were found. For comparison, the more complex symbol-to-symbol MAP, whose optimal a posteriori probabilities can be transformed into soft outputs, was investigated. >

1,848 citations

Journal ArticleDOI
TL;DR: An up-to-date survey on FSO communication systems is presented, describing FSO channel models and transmitter/receiver structures and details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits are provided.
Abstract: Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) bands. In this survey, we focus on outdoor terrestrial OWC links which operate in near IR band. These are widely referred to as free space optical (FSO) communication in the literature. FSO systems are used for high rate communication between two fixed points over distances up to several kilometers. In comparison to radio-frequency (RF) counterparts, FSO links have a very high optical bandwidth available, allowing much higher data rates. They are appealing for a wide range of applications such as metropolitan area network (MAN) extension, local area network (LAN)-to-LAN connectivity, fiber back-up, backhaul for wireless cellular networks, disaster recovery, high definition TV and medical image/video transmission, wireless video surveillance/monitoring, and quantum key distribution among others. Despite the major advantages of FSO technology and variety of its application areas, its widespread use has been hampered by its rather disappointing link reliability particularly in long ranges due to atmospheric turbulence-induced fading and sensitivity to weather conditions. In the last five years or so, there has been a surge of interest in FSO research to address these major technical challenges. Several innovative physical layer concepts, originally introduced in the context of RF systems, such as multiple-input multiple-output communication, cooperative diversity, and adaptive transmission have been recently explored for the design of next generation FSO systems. In this paper, we present an up-to-date survey on FSO communication systems. The first part describes FSO channel models and transmitter/receiver structures. In the second part, we provide details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits. Specific topics include advances in modulation, channel coding, spatial/cooperative diversity techniques, adaptive transmission, and hybrid RF/FSO systems.

1,749 citations

Journal ArticleDOI
TL;DR: This paper presents two extensions to the coded cooperation framework, which increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes and investigates the application of turbo codes to this framework.
Abstract: When mobiles cannot support multiple antennas due to size or other constraints, conventional space-time coding cannot be used to provide uplink transmit diversity. To address this limitation, the concept of cooperation diversity has been introduced, where mobiles achieve uplink transmit diversity by relaying each other's messages. A particularly powerful variation of this principle is coded cooperation. Instead of a simple repetition relay, coded cooperation partitions the codewords of each mobile and transmits portions of each codeword through independent fading channels. This paper presents two extensions to the coded cooperation framework. First, we increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes. We calculate bounds for the bit- and block-error rates to demonstrate the resulting gains. Second, since cooperative coding contains two code components, it is natural to apply turbo codes to this framework. We investigate the application of turbo codes in coded cooperation and demonstrate the resulting gains via error bounds and simulations.

956 citations

Journal ArticleDOI
TL;DR: An overview of rate-distortion (R-D) based optimization techniques and their practical application to image and video coding is provided and two popular techniques for resource allocation are introduced, namely, Lagrangian optimization and dynamic programming.
Abstract: In this article we provide an overview of rate-distortion (R-D) based optimization techniques and their practical application to image and video coding. We begin with a short discussion of classical rate-distortion theory and then we show how in many practical coding scenarios, such as in standards-compliant coding environments, resource allocation can be put in an R-D framework. We then introduce two popular techniques for resource allocation, namely, Lagrangian optimization and dynamic programming. After a discussion of these techniques as well as some of their extensions, we conclude with a quick review of literature in these areas citing a number of applications related to image and video compression and transmission.

925 citations

References
More filters
Journal ArticleDOI
TL;DR: The receiver adapts to the actual jammer-to-signal(J/S)ratio which is critical when the level of interference is not known a priori, and optimizes the code rate and minimizes the delay required to decode a given packet.
Abstract: It is well known that if the data rate is chosen below the available channel capacity, error-free communication is possible. Furthermore, numerous practical error-correction coding techniques exist which can be chosen to meet the user's reliability constraints. However, a basic problem in designing a reliable digital communication system is still the choice of the actual code rate. While the popular rate-1/2 code rate is a reasonable, but not optimum, choice for additive Gaussian noise channels, its selection is far from optimum for channels where a high percentage of the transmitted bits are destroyed by interference. Code combining represents a technique of matching the code rate to the prevailing channel conditions. Information is transmitted in packet formats which are encoded with a relatively high-rate code, e.g., rate 1/2, which can be repeated to Obtain reliable communications when the redundancy in a rate-1/2 code is not sufficient to overcome the channel interference. The receiver combines noisy packets (code combining) to obtain a packet with a code rate which is low enough such that reliable communication is possible even for channels with extremely high error rates. By combining the minimum number of packets needed to overcome the channel conditions, the receiver optimizes the code rate and minimizes the delay required to decode a given packet. Thus, the receiver adapts to the actual jammer-to-signal (J/S) ratio which is critical when the level of interference J is not known a priori.

1,085 citations

Journal ArticleDOI
TL;DR: In this article, a survey of various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes is presented, where a properly chosen code is used for error detection, virtually error-free data transmission can be attained.
Abstract: ERROR DETECTION incorporated with automatic-repeatrequest (ARQ) is widely used for error control in data communications systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. This paper surveys various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes.

976 citations

Journal ArticleDOI
TL;DR: The high-rate punctured codes of rates 2/3 through 13/14 are derived from rate 1/2 specific convolutional codes with maximal free distance based on their bit error rate performances under soft decision Viterbi decoding.
Abstract: The high-rate punctured codes of rates 2/3 through 13/14 are derived from rate 1/2 specific convolutional codes with maximal free distance. Coding gains of derived codes are compared based on their bit error rate performances under soft decision Viterbi decoding.

399 citations

Journal ArticleDOI
TL;DR: The structure of punctured convolutional cedes is described, and it is indicated how their use simplifies the design of maximum likelihood decoders.
Abstract: The structure of punctured convolutional cedes is described, and it is indicated how their use simplifies the design of maximum likelihood decoders. The best codes of this class for rates 2/3 and 3/4 are tabulated and performance curves are given for these codes.

327 citations