scispace - formally typeset
Search or ask a question
Journal Article

Reaction Scope and Mechanistic Insights of Nickel-Catalyzed Migratory Suzuki-Miyaura Cross-Coupling

01 Jan 2020-Synthesis (Thieme)-Vol. 52, Iss: 9
TL;DR: A nickel-catalyzed migratory Suzuki–Miyaura cross-coupling featuring high benzylic or allylic selectivity and unactivated alkyl electrophiles and aryl or vinyl boronic acids can be efficiently transferred to diarylalkane or allylbenzene derivatives under mild conditions.
Abstract: Cross-coupling reactions have developed into powerful approaches for carbon–carbon bond formation. In this work, a Ni-catalyzed migratory Suzuki–Miyaura cross-coupling featuring high benzylic or allylic selectivity has been developed. With this method, unactivated alkyl electrophiles and aryl or vinyl boronic acids can be efficiently transferred to diarylalkane or allylbenzene derivatives under mild conditions. Importantly, unactivated alkyl chlorides can also be successfully used as the coupling partners. To demonstrate the applicability of this method, we showcase that this strategy can serve as a platform for the synthesis of terminal, partially deuterium-labeled molecules from readily accessible starting materials. Experimental studies suggest that migratory cross-coupling products are generated from Ni(0/II) catalytic cycle. Theoretical calculations indicate that the chain-walking occurs at a neutral nickel complex rather than a cationic one. In addition, the original-site cross-coupling products can be obtained by alternating the ligand, wherein the formation of the products has been rationalized by a radical chain process. Migratory cross-coupling reactions are powerful tools to form bonds at predictable positions. Here the authors report a nickel-catalyzed migratory Suzuki–Miyaura cross-coupling of unactivated alkyl electrophiles with aryl and vinyl boron reagents and provide experimental and computational mechanistic evidence.
Citations
More filters
Journal ArticleDOI
Brijesh S. Kadu1
TL;DR: The advancements (within the last 4 years) in catalysis related to SMCR that would be beneficial for researchers in designing synthetic protocols for the preparation of pharmacophores as well as drug molecules are discussed.

68 citations

Journal ArticleDOI
TL;DR: Preliminary experimental evidence supports the proposed non-dissociated chainwalking of aryl-nickel(II)-hydride species along the alkyl chain of alkenes before selective reductive elimination at a benzylic position.
Abstract: A redox-relay migratory hydroarylation of isomeric mixtures of olefins with arylboronic acids catalyzed by nickel complexes bearing diamine ligands is described. A range of structurally diverse 1,1-diarylalkanes, including those containing a 1,1-diarylated quaternary carbon, were obtained in excellent yields and with high regioselectivity. Preliminary experimental evidence supports the proposed non-dissociated chainwalking of aryl-nickel(II)-hydride species along the alkyl chain of alkenes before selective reductive elimination at a benzylic position. A catalyst loading as low as 0.5 mol % proved to be sufficient in large-scale synthesis while retaining high reactivity, highlighting the practical value of this transformation.

61 citations

Journal ArticleDOI
TL;DR: In the solution-induced aggregation studies, upon the addition of nonsolubilizing solvents, the emergence of low-energy absorption bands has been realized, and such a complex is found to demonstrate interesting self-assembly behaviors to offer well-defined and highly ordered supramolecular architectures.
Abstract: A series of cyclometalating tridentate N^C^N and tetradentate N^C^N^O ligand-containing complexes of earth-abundant nickel(II) has been designed and synthesized. Among them, the carbazolylnickel(II) complex demonstrates, for the first time, an orange color room-temperature luminescence. Such a complex is also found to exhibit intense luminescence with excited state lifetimes in the submicrosecond regime at 77 K, suggesting the triplet nature of the emissive state. Meanwhile, the self-assembly property of the tetradentate ligand-containing nickel(II) complex in solution has been investigated. Owing to its nearly perfect square planar geometry, as evidenced by X-ray crystal structure determination, it is found to exhibit self-assembly properties with the aid of π-π interactions and possibly weak Ni···Ni interactions, which have been supported by DFT calculations and NCI plot. Indeed, the ground-state aggregation behavior of this complex has been confirmed by concentration-dependent UV-vis absorption spectroscopy. Moreover, in the solution-induced aggregation studies, upon the addition of nonsolubilizing solvents, the emergence of low-energy absorption bands has been realized, and such a complex is found to demonstrate interesting self-assembly behaviors to offer well-defined and highly ordered supramolecular architectures.

46 citations

Journal ArticleDOI
TL;DR: This work provides a guide for determining the general principle behind organocatalytic reactions with various chemoselectivities, and suggests a general application of the reaction index in predicting theChemoselectivity of the nucleophilic and electrophilic reactions.
Abstract: Generally, N-heterocyclic carbene (NHC) complexed with carbonyl compounds would transform into several important active intermediates, ie, enolates, Breslow intermediates, or acylazolium intermediates, which act as either a nucleophile (Nu) or an electrophile (E) to react with the other E/Nu partner Hence, the key to predicting the origin of chemoselectivity is to compute the activity (ie, electrophilic index ω for E and nucleophilic index N for Nu) and stability of the intermediates and products, which are suggested in a general mechanistic map of these reactions To support this point, we selected and studied different cases of the NHC-catalyzed reactions of carbonyl compounds in the presence of a base and/or an oxidant, in which multiple possible pathways involving acylazolium, enolate, Breslow, and α,β-unsaturated acylazolium intermediates were proposed and a novel index ω + N of the E and Nu partners was employed to exactly predict the energy barrier of the chemoselective step in theory This work provides a guide for determining the general principle behind organocatalytic reactions with various chemoselectivities, and suggests a general application of the reaction index in predicting the chemoselectivity of the nucleophilic and electrophilic reactions

42 citations

Journal ArticleDOI
TL;DR: An overview of the recent advances in copper-mediated coupling reactions is given, focusing on whether the presence of CuIII is adopted in the catalytic cycle.

41 citations

References
More filters
Journal ArticleDOI
TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Abstract: A correlation-energy formula due to Colle and Salvetti [Theor. Chim. Acta 37, 329 (1975)], in which the correlation energy density is expressed in terms of the electron density and a Laplacian of the second-order Hartree-Fock density matrix, is restated as a formula involving the density and local kinetic-energy density. On insertion of gradient expansions for the local kinetic-energy density, density-functional formulas for the correlation energy and correlation potential are then obtained. Through numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, it is demonstrated that these formulas, like the original Colle-Salvetti formulas, give correlation energies within a few percent.

84,646 citations

Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations


Additional excerpts

  • ...9.(19)F NMR (377 MHz, Chloroform-d) δ -117....

    [...]

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

Journal ArticleDOI
TL;DR: This Account compared the performance of the M06-class functionals and one M05-class functional (M05-2X) to that of some popular functionals for diverse databases and their performance on several difficult cases.
Abstract: Although density functional theory is widely used in the computational chemistry community, the most popular density functional, B3LYP, has some serious shortcomings: (i) it is better for main-group chemistry than for transition metals; (ii) it systematically underestimates reaction barrier heights; (iii) it is inaccurate for interactions dominated by medium-range correlation energy, such as van der Waals attraction, aromatic−aromatic stacking, and alkane isomerization energies. We have developed a variety of databases for testing and designing new density functionals. We used these data to design new density functionals, called M06-class (and, earlier, M05-class) functionals, for which we enforced some fundamental exact constraints such as the uniform-electron-gas limit and the absence of self-correlation energy. Our M06-class functionals depend on spin-up and spin-down electron densities (i.e., spin densities), spin density gradients, spin kinetic energy densities, and, for nonlocal (also called hybrid)...

5,876 citations

Journal ArticleDOI
TL;DR: This Review attempts to trace the historical origin of these powerful reactions, and outline the developments from the seminal discoveries leading to their eminent position as appreciated and applied today.
Abstract: In 2010, Richard Heck, Ei-ichi Negishi, and Akira Suzuki joined the prestigious circle of Nobel Laureate chemists for their roles in discovering and developing highly practical methodologies for C-C bond construction. From their original contributions in the early 1970s the landscape of the strategies and methods of organic synthesis irreversibly changed for the modern chemist, both in academia and in industry. In this Review, we attempt to trace the historical origin of these powerful reactions, and outline the developments from the seminal discoveries leading to their eminent position as appreciated and applied today.

2,148 citations


"Reaction Scope and Mechanistic Insi..." refers background in this paper

  • ...(2) the transmetalation is the rate-determining step (RDS)....

    [...]