scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Reactive Oxygen Species and the Central Nervous System

01 Nov 1992-Journal of Neurochemistry (Springer, Berlin, Heidelberg)-Vol. 59, Iss: 5, pp 1609-1623
TL;DR: The nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain‐breaking antioxidants.
Abstract: Radicals are species containing one or more unpaired electrons. The oxygen radical superoxide (O 2 - ) and the non-radical oxidants hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are produced during normal metabolism and perform several useful functions. Excessive production of O 2 - and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxy 1 radical (· OH) and other oxidants in the presence of “catalytic” iron or copper ions. A major form of antioxidant defence is the storage and transport of iron or copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e. g., by ischaemia or trauma, can cause increased iron availability and accelerate free radical reactions. This may be especially important in the brain, since areas of this organ are rich in iron and cerebrospinal fluid cannot bind released iron ions. Oxidative stress upon nervous tissue can produce damage by several interacting mechanisms, including rises in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminium and in damage to the substantia nigra in Parkinson’s disease are reviewed. Finally, the nature of antioxidants is discussed, with a suggestion that antioxidant enzymes and chelators of iron ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be taken in the design of antioxidants for therapeutic use.
Citations
More filters
Journal ArticleDOI
TL;DR: After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Abstract: The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.

2,430 citations


Cites background from "Reactive Oxygen Species and the Cen..."

  • ...…focus on what they have in common (Table 3); impaired mitochondrial function (Reddy and Beal 2005; Zeevalk et al. 2005), increased oxidative damage (Halliwell 1992, 2001; Jenner 2003), defects in the ubiquitin–proteasome system (Stefanis and Keller 2006; McNaught et al. 2001; Ciechanover and…...

    [...]

  • ...So we have some way to go before finding effective antioxidant therapeutics for neurodegenerative diseases, but we have come a long way since 1992 (Halliwell 1992)....

    [...]

  • ...In 1992, I wrote a review in this journal entitled ‘reactive oxygen species and the central nervous system’ (Halliwell 1992)....

    [...]

  • ...All aerobic cells suffer oxidative damage, yet the mammalian brain is often said to be especially sensitive (Halliwell 1992, 2001)....

    [...]

Journal ArticleDOI
TL;DR: Evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging.
Abstract: We argue for the critical role of oxidative damage in causing the mitochondrial dysfunction of aging. Oxidants generated by mitochondria appear to be the major source of the oxidative lesions that accumulate with age. Several mitochondrial functions decline with age. The contributing factors include the intrinsic rate of proton leakage across the inner mitochondrial membrane (a correlate of oxidant formation), decreased membrane fluidity, and decreased levels and function of cardiolipin, which supports the function of many of the proteins of the inner mitochondrial membrane. Acetyl-L-carnitine, a high-energy mitochondrial substrate, appears to reverse many age-associated deficits in cellular function, in part by increasing cellular ATP production. Such evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging.

1,977 citations

Journal ArticleDOI
TL;DR: The physical basis for electrical stimulation of excitable tissue, as used by electrophysiological researchers and clinicians in functional electrical stimulation, is presented with emphasis on the fundamental mechanisms of charge injection at the electrode/tissue interface.

1,875 citations

Journal ArticleDOI
TL;DR: Oxidative stress contributes to the cascade leading to dopamine cell degeneration in Parkinson's disease (PD), but oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation.
Abstract: Oxidative stress contributes to the cascade leading to dopamine cell degeneration in Parkinson's disease (PD). However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to, or is a consequence of, these events. Oxidative damage to lipids, proteins, and DNA occurs in PD, and toxic products of oxidative damage, such as 4-hydroxynonenal (HNE), can react with proteins to impair cell viability. There is convincing evidence for the involvement of nitric oxide that reacts with superoxide to produce peroxynitrite and ultimately hydroxyl radical production. Recently, altered ubiquitination and degradation of proteins have been implicated as key to dopaminergic cell death in PD. Oxidative stress can impair these processes directly, and products of oxidative damage, such as HNE, can damage the 26S proteasome. Furthermore, impairment of proteasomal function leads to free radical generation and oxidative stress. Oxidative stress occurs in idiopathic PD and products of oxidative damage interfere with cellular function, but these form only part of a cascade, and it is not possible to separate them from other events involved in dopaminergic cell death.

1,826 citations

Journal ArticleDOI
TL;DR: The differences in standard metabolic rate between animals of different body mass and phylogeny appear to be due to proportionate changes in the whole of energy metabolism.
Abstract: The molecular origin of standard metabolic rate and thermogenesis in mammals is examined. It is pointed out that there are important differences and distinctions between the cellular reactions that 1) couple to oxygen consumption, 2) uncouple metabolism, 3) hydrolyze ATP, 4) control metabolic rate, 5) regulate metabolic rate, 6) produce heat, and 7) dissipate free energy. The quantitative contribution of different cellular reactions to these processes is assessed in mammals. We estimate that approximately 90% of mammalian oxygen consumption in the standard state is mitochondrial, of which approximately 20% is uncoupled by the mitochondrial proton leak and 80% is coupled to ATP synthesis. The consequences of the significant contribution of proton leak to standard metabolic rate for tissue P-to-O ratio, heat production, and free energy dissipation by oxidative phosphorylation and the estimated contribution of ATP-consuming processes to tissue oxygen consumption rate are discussed. Of the 80% of oxygen consumption coupled to ATP synthesis, approximately 25-30% is used by protein synthesis, 19-28% by the Na(+)-K(+)-ATPase, 4-8% by the Ca2(+)-ATPase, 2-8% by the actinomyosin ATPase, 7-10% by gluconeogenesis, and 3% by ureagenesis, with mRNA synthesis and substrate cycling also making significant contributions. The main cellular reactions that uncouple standard energy metabolism are the Na+, K+, H+, and Ca2+ channels and leaks of cell membranes and protein breakdown. Cellular metabolic rate is controlled by a number of processes including metabolic demand and substrate supply. The differences in standard metabolic rate between animals of different body mass and phylogeny appear to be due to proportionate changes in the whole of energy metabolism. Heat is produced by some reactions and taken up by others but is mainly produced by the reactions of mitochondrial respiration, oxidative phosphorylation, and proton leak on the inner mitochondrial membrane. Free energy is dissipated by all cellular reactions, but the major contributions are by the ATP-utilizing reactions and the uncoupling reactions. The functions and evolutionary significance of standard metabolic rate are discussed.

1,789 citations

References
More filters
Book
13 Jun 1985
TL;DR: 1. Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive species, and the chemistry of free radicals and related 'reactive species'
Abstract: 1. Oxygen is a toxic gas - an introductionto oxygen toxicity and reactive species 2. The chemistry of free radicals and related 'reactive species' 3. Antioxidant defences Endogenous and Diet Derived 4. Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death 5. Measurement of reactive species 6. Reactive species can pose special problems needing special solutions. Some examples. 7. Reactive species can be useful some more examples 8. Reactive species can be poisonous: their role in toxicology 9. Reactive species and disease: fact, fiction or filibuster? 10. Ageing, nutrition, disease, and therapy: A role for antioxidants?

21,528 citations

Journal ArticleDOI
TL;DR: It is now clear that oxygen-derived free radicals play an important part in several models of experimentally induced reperfusion injury, and Dysfunction induced by free radicals may be a major component of ischemic diseases of the heart, bowel, liver, kidney, and brain.
Abstract: It is now clear that oxygen-derived free radicals play an important part in several models of experimentally induced reperfusion injury. Although there are certainly multiple components to clinical ischemic and reperfusion injury, it appears likely that free-radical production may make a major contribution at certain stages in the progression of the injury. The primary source of superoxide in reperfused reoxygenated tissues appears to be the enzyme xanthine oxidase, released during ischemia by a calcium-triggered proteolytic attack on xanthine dehydrogenase. Reperfused tissues are protected in a variety of laboratory models by scavengers of superoxide radicals or hydroxyl radicals or by allopurinol or other inhibitors of xanthine oxidase. Dysfunction induced by free radicals may thus be a major component of ischemic diseases of the heart, bowel, liver, kidney, and brain.

5,440 citations

Book ChapterDOI
TL;DR: The chapter discusses the metabolism of transition metals, such as iron and copper, and the chelation therapy that is an approach to site-specific antioxidant protection.
Abstract: Publisher Summary This chapter discusses the role of free radicals and catalytic metal ions in human disease. The importance of transition metal ions in mediating oxidant damage naturally leads to the question as to what forms of such ions might be available to catalyze radical reactions in vivo . The chapter discusses the metabolism of transition metals, such as iron and copper. It also discusses the chelation therapy that is an approach to site-specific antioxidant protection. The detection and measurement of lipid peroxidation is the evidence most frequently cited to support the involvement of free radical reactions in toxicology and in human disease. A wide range of techniques is available to measure the rate of this process, but none is applicable to all circumstances. The two most popular are the measurement of diene conjugation and the thiobarbituric acid (TBA) test, but they are both subject to pitfalls, especially when applied to human samples. The chapter also discusses the essential principles of the peroxidation process. When discussing lipid peroxidation, it is essential to use clear terminology for the sequence of events involved; an imprecise use of terms such as initiation has caused considerable confusion in the literature. In a completely peroxide-free lipid system, first chain initiation of a peroxidation sequence in a membrane or polyunsaturated fatty acid refers to the attack of any species that has sufficient reactivity to abstract a hydrogen atom from a methylene group.

5,033 citations